eBook.de : Ihr Online Shop für eBooks, Reader, Downloads und Bücher
Connect 01/2015 eBook-Shops: Testsieger im epub Angebot, Testurteil: gut Die Welt: Kundenorientierte Internetseiten Prädikat GOLD
+49 (0)40 4223 6096
€ 0,00
Zur Kasse
- 88% **

Numerik-Algorithmen

Verfahren, Beispiele, Anwendungen. 9. Aufl. 2005.
Sofort lieferbar (Download)
eBook PDF

Dieses eBook können Sie auf allen Geräten lesen, die PDF- und DRM-fähig sind. z.B. auf den tolino oder Sony Readern - nicht auf dem Kindle.

Häufig gestellte Fragen zu PDF eBooks und Adobe DRM-Kopierschutz

eBook € 6,99* inkl. MwSt.
Print-Ausgabe: € 59,99
Verschenken
Machen Sie jemandem eine Freude und
verschenken Sie einen Download!
Ganz einfach Downloads verschenken - so funktioniert's:
  1. 1 Geben Sie die Adresse der Person ein, die Sie beschenken
    möchten. Mit einer lieben Grußbotschaft verleihen Sie Ihrem
    Geschenk eine persönliche Note.
  2. 2 Bezahlen Sie das Geschenk bequem per Kreditkarte,
    Überweisung oder Lastschrift.
  3. 3 Der/die Geschenkempfänger/in bekommt von uns Ihre Nachricht
    und eine Anleitung zum Downloaden Ihres Geschenks!
Dieses eBook ist auch verfügbar als:

Produktdetails

Titel: Numerik-Algorithmen
Autor/en: Gisela Engeln-Müllges, Klaus Niederdrenk, Reinhard Wodicka

EAN: 9783540263531
Format:  PDF
Verfahren, Beispiele, Anwendungen.
9. Aufl. 2005.
Springer Berlin Heidelberg

14. Januar 2006 - pdf eBook

Das Buch ist eine praxisnahe Einführung in die Numerische Mathematik zu grundlegenden Aufgabengebieten wie lineare und nichtlineare Gleichungen und Systeme, Eigenwerte von Matrizen, Approximation, Interpolation, Splines, Quadratur und Kubatur. Die Autoren beschreiben die mathematischen und numerischen Prinzipien wichtiger Verfahren und stellen leistungsfähige Algorithmen für deren Durchführung dar. Zahlreiche Beispiele und erläuternde Skizzen erleichtern das Verständnis. Für jeden Problemkreis werden Entscheidungshilfen für die Auswahl der geeigneten Methode angegeben. Zu allen Verfahren wurden Programme in C entwickelt, die auf einer CD-ROM beigefügt sind. Eine zweite CD-ROM enthält Spline-Funktionen als Demo-Version aus der interaktiven Lernumgebung NUMAS.
Darstellung von Zahlen und Fehleranalyse, Kondition und Stabilität.
Numerische Verfahren zur Lösung nichtlinearer Gleichungen.
Verfahren zur Lösung algebraischer Gleichungen.
Direkte Verfahren zur Lösung linearer Gleichungssysteme.
Iterationsverfahren zur Lösung linearer Gleichungssysteme.
Systeme nichtlinearer Gleichungen.
Eigenwerte und Eigenvektoren von Matrizen.
Lineare und nichtlineare Approximation.
Polynomiale Interpolation sowie Shepard-Interpolation.
Interpolierende Polynom-Splines zur Konstruktion glatter Kurven.
Akima- und Renner-Subsplines.
Zweidimensionale Splines, Oberflächensplines, Bézier-Splines, B-Splines.
Numerische Differentiation.
Numerische Quadratur.
Numerische Kubatur.

4.17 Entscheidungshilfen für die Auswahl des Verfahrens (S. 219-220)

Trotz der Vielzahl numerischer Verfahren, die zur Lösung linearer Gleichungssysteme zur Verfügung stehen, ist die praktische Bestimmung der Lösungen für große Werte von n eine problematische numerische Aufgabe. Die Gründe hierfür sind (1) der Arbeitsaufwand (die Rechenzeit), (2) der Speicherplatzbedarf, (3) die Verfälschung der Ergebnisse durch Rundungsfehler oder mathematische Instabilität des Problems.

Zu (1): Der Arbeitsaufwand lässt sich über die Anzahl erforderlicher Punktoperationen (Multiplikationen, Divisionen) abschätzen. Die folgende Tabelle liefert die Anzahl der Punktoperationen, die erforderlich sind, um ein lineares Gleichungssystem aus n Gleichungen mit n Unbekannten nach den angegebenen Verfahren zu lösen. Die Anzahl erforderlicher Additionen und Subtraktionen bleibt in diesem Vergleich unberücksichtigt.

Zu (2): Vom Computer her gesehen ergeben sich bez¨uglich des Speicherplatzes zwei kritische Größen f¨ur sehr große n: (a) der für die Speicherung der aik verfügbare Platz im Arbeitsspeicher (Hauptspeicher), (b) der dafür verfügbare Platz in den Hintergrundspeichern. Der Speicherplatzbedarf verringert sich, wenn A spezielle Eigenschaften, z. B. Bandstruktur, besitzt, dünn besetzt ist oder symmetrisch ist. Es entsteht praktisch kein Speicherplatzbedarf, wenn sich die aik aufgrund einer im Einzelfall gegebenen Vorschrift jeweils im Computer berechnen lassen ("generated Matrix"), siehe auch die folgende Bemerkung.

Zu (3): Durch geeignete Gestaltung des Ablaufs der Rechnung kann die Akkumulation von Rundungsfehlern unter Kontrolle gehalten werden, sofern die Ursache nicht in mathematischer Instabilit¨a t des Problems liegt. Deshalb sollte grundsätzli
ch mit skalierter teilweiser Pivotisierung gearbeitet werden, es sei denn, die spezielle Struktur des Systems garantiert numerische Stabilität. Mit relativ geringem Aufwand lassen sich die Ergebnisse jeweils durch Nachiteration verbessern. Im Allgemeinen lassen sich weder die Kondition des Systems noch die Frage, ob die Bedingungen f¨ur die eindeutige Lösbarkeit erfüllt sind, vor Beginn der numerischen Rechnung prüfen. Daher sollten die Programme so gestaltet sein, dass sie den Benutzern im Verlaufe der Rechnung darüber Auskunft geben.

Bemerkungen zu großen Systemen und dünnbesetzten Matrizen:

Bei sehr großen Systemen, bei denen die Elemente von A und a nicht vollst¨a ndig im Arbeitsspeicher unterzubringen sind (selbst nicht in gepackter Form), können sogenannte Blockmethoden angewandt werden, s. dazu Abschnitt 4.15. Solche Systeme treten vorwiegend im Zusammenhang mit der numerischen Lösung partieller Di.erentialgleichungen auf. Sind die Matrizen d¨unn besetzt, wie es häufig bei der Lösung von Randwertproblemen für gewöhnliche und partielle Di.erentialgleichungen durch Differenzenverfahren oder die Finite-Elemente-Methode auftritt, sollten entsprechende Lösungsalgorithmen verwendet werden, siehe dazu z. B. [MAES1985] und [WEIS1990],

1. Die Anwendung des Algorithmus von Cuthill-McKee [CUTH1969] überführt die dünnbesetzte Matrix (z. B. Stei.gkeitsmatrix) in eine Bandmatrix mit fast optimaler Bandbreite, aber eben im Allgemeinen noch nicht mit der möglichen minimalen Bandbreite.

2. Anschließend wird mit den Nummerierungen aus Cuthill-McKee als Startnummerierung der Algorithmus von Rosen angewandt, der im Allgemeinen die Bandbreite weiter verringert. Es gibt aber auch Fälle, wo damit keine weitere Verminderung der Bandbreite erzielt werden kann. Weitere geeignete Verfahren, insbesondere
auch Iterationsverfahren, sind in [WEIS1990] zu finden.


From the reviews of the ninth edition:

"The book offers a broad coverage for several key topics of numerical analysis ... . The text addresses both theoretical aspects and practical applications, the fundamental mathematical basis being illustrated by numerous examples. The logical arrangement of the material makes it suitable for self-study and, equally, recommends it as a teaching support. The book is accompanied by two CDs, providing the C codes of the algorithms and demonstrative programs." (Octavian Pastravanu, Zentralblatt MATH, Vol. 1069, 2005)

Dieses eBook wird im PDF-Format geliefert und ist mit einem Adobe DRM-Kopierschutz versehen. Sie können dieses eBook auf vielen gängigen Endgeräten lesen.

Sie können dieses eBook auf vielen gängigen Endgeräten lesen.

Für welche Geräte?
Sie können das eBook auf allen Lesegeräten, in Apps und in Lesesoftware öffnen, die PDF und Adobe DRM unterstützen:

  • tolino Reader
    Öffnen Sie das eBook nach der automatischen Synchronisation auf dem Reader oder übertragen Sie das eBook auf Ihr tolino Gerät mit einer kostenlosen Software wie beispielsweise Adobe Digital Editions.

  • Sony Reader und andere eBook Reader
    Laden Sie das eBook direkt auf dem Reader im eBook.de-Shop herunter oder übertragen Sie das eBook mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions auf ein Standard-Lesegeräte mit PDF- und Adobe DRM-Unterstützung.

  • Tablets und Smartphones
    Installieren Sie die tolino Lese-App für Android und iOS oder verwenden Sie eine andere Lese-App für PDF-eBooks mit Adobe DRM.

  • PC und Mac
    Lesen Sie das eBook direkt nach dem Herunterladen über "Jetzt lesen" im Browser, oder mit der kostenlosen Lesesoftware Adobe Digital Editions.

Schalten Sie das eBook mit Ihrer persönlichen Adobe ID auf bis zu sechs Geräten gleichzeitig frei.

Bitte beachten Sie: Dieses eBook ist nicht auf Kindle-Geräten lesbar.

Ihr erstes eBook?
Hier erhalten Sie alle Informationen rund um die digitalen Bücher für Neueinsteiger.

Kundenbewertungen zu Gisela Engeln-Müllg… „Numerik-Algorithmen“
Noch keine Bewertungen vorhanden
Zur Rangliste der Rezensenten
Veröffentlichen Sie Ihre Kundenbewertung:
Kundenbewertung schreiben
Unsere Leistungen auf einen Klick
Unser Service für Sie
Zahlungsmethoden
Bequem, einfach und sicher mit eBook.de. mehr Infos akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal mehr Infos
Geprüfte Qualität
  • Schnelle Downloads
  • Datenschutz
  • Sichere Zahlung
  • SSL-Verschlüsselung
Servicehotline
+49 (0)40 4223 6096
Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 18.00 Uhr
Chat
Ihre E-Mail-Adresse eintragen und kostenlos informiert werden:
* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.
Bei als portofrei markierten Produkten bezieht sich dies nur auf den Versand innerhalb Deutschlands.

** Deutschsprachige eBooks und Bücher dürfen aufgrund der in Deutschland geltenden Buchpreisbindung und/oder Vorgaben von Verlagen nicht rabattiert werden. Soweit von uns deutschsprachige eBooks und Bücher günstiger angezeigt werden, wurde bei diesen kürzlich von den Verlagen der Preis gesenkt oder die Buchpreisbindung wurde für diese Titel inzwischen aufgehoben. Angaben zu Preisnachlässen beziehen sich auf den dargestellten Vergleichspreis.
eBook.de - Meine Bücher immer dabei
eBook.de ist eine Marke der Hugendubel Digital GmbH & Co. KG
Folgen Sie uns unter: