eBook.de : Ihr Online Shop für eBooks, Reader, Downloads und Bücher
Connect 01/2015 eBook-Shops: Testsieger im epub Angebot, Testurteil: gut Die Welt: Kundenorientierte Internetseiten Prädikat GOLD
+49 (0)40 4223 6096
€ 0,00
Zur Kasse

Mastering System Identification

66:B&W 7 x 10 in or 254 x 178 mm Perfect Bound on White w/G…
Lieferbar innerhalb von 2 bis 3 Werktagen
Taschenbuch
Taschenbuch € 61,49* inkl. MwSt.
Portofrei*

Produktdetails

Titel: Mastering System Identification
Autor/en: Schoukens, Pintelon, Rolain

ISBN: 0470936983
EAN: 9780470936986
66:B&W 7 x 10 in or 254 x 178 mm Perfect Bound on White w/Gloss Lam.
Sprache: Englisch.
John Wiley & Sons

19. März 2012 - kartoniert - 282 Seiten

This book enables readers to understand system identification and linear system modeling through 100 practical exercises without requiring complex theoretical knowledge. The contents encompass state-of-the-art system identification methods, with both time and frequency domain system identification methods covered, including the pros and cons of each. Each chapter features MATLAB exercises, discussions of the exercises, accompanying MATLAB downloads, and larger projects that serve as potential assignments in this learn-by-doing resource.
Preface xiii
Acknowledgments xv
Abbreviations xvii
1 Identification 1
Exercise 1 .a (Least squares estimation of the value of a resistor) 2
Exercise 1 .b (Analysis of the standard deviation) 3
Exercise 2 (Study of the asymptotic distribution of an estimate) 5
Exercise 3 (Impact of noise on the regressor (input) measurements) 6
Exercise 4 (Importance of the choice of the independent variable or input) 7
Exercise 5.a (combining measurements with a varying SNR: Weighted least squares estimation) 8
Exercise 5.b (Weighted least squares estimation: A study of the variance) 9
Exercise 6 (Least squares estimation of models that are linear in the parameters) 11
Exercise 7 (Characterizing a 2-dimensional parameter estimate) 12
Exercise 8 (Dependence of the optimal cost function on the distribution of the disturbing noise) 14
Exercise 9 (Identification in the presence of outliers) 16
Exercise 10 (Influence of the number of parameters on the model uncertainty) 18
Exercise 11 (Model selection using the AIC criterion) 20
Exercise 12 (Noise on input and output: The instrumental variables method applied on the resistor estimate) 23
Exercise 13 (Noise on input and output: the errors-in-variables method) 25
2 Generation and Analysis of Excitation Signals 29
Exercise 14 (Discretization in time: Choice of the sampling frequency: ALIAS) 31
Exercise 15 (Windowing: Study of the leakage effect and the frequency resolution) 31
Exercise 16 (Generate a sine wave, noninteger number of periods measured) 34
Exercise 17 (Generate a sine wave, integer number of periods measured) 34
Exercise 18 (Generate a sine wave, doubled measurement time) 35
Exercise 19.a (Generate a sine wave using the MATLAB IFFT instruction) 37
Exercise 19.b (Generate a sine wave using the MATLAB IFFT instruction, defining only the first half of the spectrum) 37
Exercise 20 (Generation of a multisine with flat amplitude spectrum) 38
Exercise 21 (The swept sine signal) 39
Exercise 22.a (Spectral analysis of a multisine signal, leakage present) 40
Exercise 22.b (Spectral analysis of a multisine signal, no leakage present) 40
Exercise 23 (Generation of a multisine with a reduced crest factor using random phase generation) 42
Exercise 24 (Generation of a multisine with a minimal crest factor using a crest factor minimization algorithm) 42
Exercise 25 (Generation of a maximum length binary sequence) 45
Exercise 26 (Tuning the parameters of a maximum length binary sequence) 46
Exercise 27 (Generation of excitation signals using the FDIDENT toolbox) 47
Exercise 28 (Repeated realizations of a white random noise excitation with fixed length) 48
Exercise 29 (Repeated realizations of a white random noise excitation with increasing length) 49
Exercise 30 (Smoothing the amplitude spectrum of a random excitation) 49
Exercise 31 (Generation of random noise excitations with a user-imposed power spectrum) 50
Exercise 32 (Amplitude distribution of filtered noise) 51
Exercise 33 (Exploiting the periodic nature of signals: Differentiation, integration, +averaging, and filtering) 52
3 FRF Measurements 55
Exercise 34 (Impulse response function measurements) 57
Exercise 35 (Study of the sine response of a linear system: transients and steady-state) 58
Exercise 36 (Study of a multisine response of a linear system: transients and steady-state) 59
Exercise 37 (FRF measurement using a noise excitation and a rectangular window) 61
Exercise 38 (Revealing the nature of the leakage effect in FRF measurements) 61
Exercise 39 (FRF measurement using a noise excitation and a Hanning window) 64
Exercise 40 (FRF measurement using a noise excitation and a diff window) 65
Exercise 41 (FRF measurements using a burst excitation) 66
Exercise 42 (Impulse response function measurements in the presence of output noise) 69
Exercise 43 (Measurement of the FRF using a random noise sequence and a random phase multisine in the presence of output noise) 70
Exercise 44 (Analysis of the noise errors on FRF measurements) 71
Exercise 45 (Impact of the block (period) length on the uncertainty) 73
Exercise 46 (FRF measurement in the presence of input/output disturbances using a multisine excitation) 75
Exercise 47 (Measuring the FRF in the presence of input and output noise: Analysis of the errors) 75
Exercise 48 (Measuring the FRF in the presence of input and output noise: Impact of the block (period) length on the uncertainty) 76
Exercise 49 (Direct measurement of the FRF under feedback conditions) 78
Exercise 50 (The indirect method) 80
Exercise 51 (The local polynomial method) 82
Exercise 52 (Estimation of the power spectrum of the disturbing noise) 84
Exercise 53 (Measuring the FRM using multisine excitations) 85
Exercise 54 (Measuring the FRM using noise excitations) 86
Exercise 55 (Estimate the variance of the measured FRM) 88
Exercise 56 (Comparison of the actual and theoretical variance of the estimated FRM) 88
Exercise 57 (Measuring the FRM using noise excitations and a Hanning window) 89
4 Identification of Linear Dynamic Systems 91
Exercise 58 (Identification in the time domain) 94
Exercise 59 (Identification in the frequency domain) 96
Exercise 60 (Numerical conditioning) 97
Exercise 61 (Simulation and one-step-ahead prediction) 99
Exercise 62 (Identify a too-simple model) 100
Exercise 63 (Sensitivity of the simulation and prediction error to model errors) 101
Exercise 64 (Shaping the model errors in the time domain: Prefiltering) 102
Exercise 65 (Shaping the model errors in the frequency domain: frequency weighting) 102
Exercise 66 (One-step-ahead prediction of a noise sequence) 105
Exercise 67 (Identification in the time domain using parametric noise models) 108
Exercise 68 (Identification Under Feedback Conditions Using Time Domain Methods) 109
Exercise 69 (Generating uncertainty bounds for estimated models) 111
Exercise 70 (Study of the behavior of the BJ model in combination with prefiltering) 113
Exercise 71 (Identification in the frequency domain using nonparametric noise models) 117
Exercise 72 (Emphasizing a frequency band) 119
Exercise 73 (Comparison of the time and frequency domain identification under feedback) 120
Exercise 74 (Identification in the frequency domain using nonparametric noise models and a random excitation) 122
Exercise 75 (Using the time domain identification toolbox) 124
Exercise 76 (Using the frequency domain identification toolbox FDIDENT) 129
5 Best Linear Approximation of Nonlinear Systems 137
Exercise 77.a (Single sine response of a static nonlinear system) 138
Exercise 77.b (Multisine response of a static nonlinear system) 139
Exercise 78 (Uniform versus Pointwise Convergence) 142
Exercise 79.a (Normal operation, subharmonics, and chaos) 143
Exercise 79.b (Influence initial conditions) 146
Exercise 80 (Multisine response of a dynamic nonlinear system) 147
Exercise 81 (Detection, quantification, and classification of nonlinearities) 148
Exercise 82 (Influence DC values signals on the linear approximation) 151
Exercise 83.a (Influence of rms value and pdf on the BLA) 152
Exercise 83.b (Influence of power spectrum coloring and pdf on the BLA) 154
Exercise 83.c (Influence of length of impulse response of signal filter on the BLA) 156
Exercise 84.a (Comparison of Gaussian noise and random phase multisine) 158
Exercise 84.b (Amplitude distribution of a random phase multisine) 160
Exercise 84.c (Influence of harmonic content multisine on BLA) 162
Exercise 85 (Influence of even and odd nonlinearities on BLA) 165
Exercise 86 (BLA of a cascade) 167
Exercise 87.a (Predictive power BLA -- static NL system) 172
Exercise 87.b (Properties of output residuals -- dynamic NL system) 174
Exercise 87.c (Predictive power of BLA -- dynamic NL system) 178
6 Measuring the Best Linear Approximation of a Nonlinear System 183
Exercise 88.a (Robust method for noisy FRF measurements) 186
Exercise 88.b (Robust method for noisy input/output measurements without reference signal) 190
Exercise 88.c (Robust method for noisy input/output measurements with reference signal) 195
Exercise 89.a (Design of baseband odd and full random phase multisines with random harmonic grid) 197
Exercise 89.b (Design of bandpass odd and full random phase multisines with random harmonic grid) 197
Exercise 89.c (Fast method for noisy input/output measurements -- open loop example) 203
Exercise 89.d (Fast method for noisy input/output measurements -- closed loop example) 207
Exercise 89.e (Bias on the estimated odd and even distortion levels) 211
Exercise 90 (Indirect method for measuring the best linear approximation) 215
Exercise 91 (Comparison robust and fast methods) 216
Exercise 92 (Confidence intervals for the BLA) 219
Exercise 93 (Prediction of the bias contribution in the BLA) 221
Exercise 94 (True underlying linear system) 222
Exercise 95 (Prediction of the nonlinear distortions using random harmonic grid multisines) 225
Exercise 96 (Pros and cons full-random and odd-random multisines) 230
7 Identification of Parametric Models in the Presence of Nonlinear Distortions 239
Exercise 97 (Parametric estimation of the best linear approximation) 240
Exercise 98 243
Exercise 99 (Estimate a parametric model for the best linear approximation using the Fast Method) 246
Exercise 100 (Estimating a parametric model for the best linear approximation using the robust method) 251
References 255
Subject Index 259
Reference Index 263
Johan Schoukens, PhD, serves as a full-time professor in the ELEC Department at the Vrije Universiteit Brussel. He has been a Fellow of IEEE since 1997 and was the recipient of the 2003 IEEE Instrumentation and Measurement Society Distinguished Service Award. Rik Pintelon, PhD, serves as a full-time professor at the Vrije Universiteit Brussel in the ELEC Department. He has been a Fellow of IEEE since 1998 and is the recipient of the 2012 IEEE Joseph F. Keithley Award in Instrumentation and Measurement (IEEE Technical Field Award). Yves Rolain, PhD, serves as a full-time professor at the Vrije Universiteit Brussel in the ELEC department. He has been a Fellow of IEEE since 2006 and was the recipient of the 2004 IEEE Instrumentation and Measurement Society Technical Award.
Kundenbewertungen zu Schoukens, Pintelon… „Mastering System Identification“
Noch keine Bewertungen vorhanden
Zur Rangliste der Rezensenten
Veröffentlichen Sie Ihre Kundenbewertung:
Kundenbewertung schreiben
Unsere Leistungen auf einen Klick
Unser Service für Sie
Zahlungsmethoden
Bequem, einfach und sicher mit eBook.de. mehr Infos akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal mehr Infos
Geprüfte Qualität
  • Schnelle Downloads
  • Datenschutz
  • Sichere Zahlung
  • SSL-Verschlüsselung
Servicehotline
+49 (0)40 4223 6096
Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 18.00 Uhr
Chat
Ihre E-Mail-Adresse eintragen und kostenlos informiert werden:
* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.
Bei als portofrei markierten Produkten bezieht sich dies nur auf den Versand innerhalb Deutschlands.

** im Vergleich zum dargestellten Vergleichspreis.
eBook.de - Meine Bücher immer dabei
eBook.de ist eine Marke der Hugendubel Digital GmbH & Co. KG
Folgen Sie uns unter: