This is one of the first parallel computing books to focus exclusively on parallel data structures, algorithms, software tools, and applications in data science. The book prepares readers to write effective parallel code in various languages and learn more about different R packages and other tools. It covers the classic "n observations, p variables" matrix format and common data structures. Many examples illustrate the range of issues encountered in parallel programming.
Inhaltsverzeichnis
Introduction to Parallel Processing in R. "Why Is My Program So Slow?": Obstacles to Speed. Principles of Parallel Loop Scheduling. The Shared Memory Paradigm: A Gentle Introduction through R. The Shared Memory Paradigm: C Level. The Shared Memory Paradigm: GPUs. Thrust and Rth. The Message Passing Paradigm. MapReduce Computation. Parallel Sorting and Merging. Parallel Prefix Scan. Parallel Matrix Operations. Inherently Statistical Approaches: Subset Methods. Appendices.