eBook.de : Ihr Online Shop für eBooks, Reader, Downloads und Bücher
+49 (0)40 4223 6096

Data Mining

von Dasu, Johnson
Versand in 1-2 Wochen
Buch (gebunden)
Buch (gebunden) € 162,49* inkl. MwSt.
Portofrei*
Dieser Artikel ist auch verfügbar als:

Produktdetails

Titel: Data Mining
Autor/en: Dasu, Johnson

ISBN: 0471268518
EAN: 9780471268512
HC gerader Rücken kaschiert.
Sprache: Englisch.
John Wiley & Sons

15. Mai 2003 - gebunden - 228 Seiten

  • Empfehlen
* Written for practitioners of data mining, data cleaning and database management.
* Presents a technical treatment of data quality including process, metrics, tools and algorithms.
* Focuses on developing an evolving modeling strategy through an iterative data exploration loop and incorporation of domain knowledge.
* Addresses methods of detecting, quantifying and correcting data quality issues that can have a significant impact on findings and decisions, using commercially available tools as well as new algorithmic approaches.
* Uses case studies to illustrate applications in real life scenarios.
* Highlights new approaches and methodologies, such as the DataSphere space partitioning and summary based analysis techniques.

Exploratory Data Mining and Data Cleaning will serve as an important reference for serious data analysts who need to analyze large amounts of unfamiliar data, managers of operations databases, and students in undergraduate or graduate level courses dealing with large scale data analys is and data mining.
0.1 Preface.

1 Exploratory Data Mining and Data Cleaning: An Overview.

1.1 Introduction.

1.2 Cautionary Tales.

1.3 Taming the Data.

1.4 Challenges.

1.5 Methods.

1.6 EDM.

1.6.1 EDM Summaries - Parametric.

1.6.2 EDM Summaries - Nonparametric.

1.7 End­to­End Data Quality (DQ).

1.7.1 DQ in Data Preparation.

1.7.2 EDM and Data Glitches.

1.7.3 Tools for DQ.

1.7.4 End­to­End DQ: The Data Quality Continuum.

1.7.5 Measuring Data Quality.

1.8 Conclusion.

2 Exploratory Data Mining.

2.1 Introduction.

2.2 Uncertainty.

2.2.1 Annotated Bibliography.

2.3 EDM: Exploratory Data Mining.

2.4 EDM Summaries.

2.4.1 Typical Values.

2.4.2 Attribute Variation.

2.4.3 Example.

2.4.4 Attribute Relationships.

2.4.5 Annotated Bibliography.

2.5 What Makes a Summary Useful?

2.5.1 Statistical Properties.

2.5.2 Computational Criteria.

2.5.3 Annotated Bibliography.

2.6 Data­Driven Approach - Nonparametric Analysis.

2.6.1 The Joy of Counting.

2.6.2 Empirical Cumulative Distribution Function (ECDF).

2.6.3 Univariate Histograms.

2.6.4 Annotated Bibliography.

2.7 EDM in Higher Dimensions.

2.8 Rectilinear Histograms.

2.9 Depth and Multivariate Binning.

2.9.1 Data Depth.

2.9.2 Aside: Depth­Related Topics.

2.9.3 Annotated Bibliography.

2.10 Conclusion.

3 Partitions and Piecewise Models.

3.1 Divide and Conquer.

3.1.1 Why Do We Need Partitions?

3.1.2 Dividing Data.

3.1.3 Applications of Partition­based EDM Summaries.

3.2 Axis­Aligned Partitions and Data Cubes.

3.3 Nonlinear Partitions.

3.3.1 Annotated Bibliography.

3.4 DataSpheres (DS).

3.4.1 Layers.

3.4.2 Data Pyramids.

3.4.3 EDM Summaries.

3.4.4 Annotated Bibliography.

3.5 Set Comparison Using EDM Summaries.

3.5.1 Motivation.

3.5.2 Comparison Strategy.

3.5.3 Statistical Tests for Change.

3.5.4 Application - Two Case Studies.

3.5.5 Annotated Bibliography.

3.6 Discovering Complex Structure in Data with EDM Summaries.

3.6.1 Exploratory Model Fitting in Interactive Response Time.

3.6.2 Annotated Bibliography.

3.7 Piecewise Linear Regression.

3.7.1 An Application.

3.7.2 Regression Coefficients.

3.7.3 Improvement in Fit.

3.7.4 Annotated Bibliography.

3.8 One­Pass Classification.

3.8.1 Quantile­Based Prediction with Piecewise Models.

3.8.2 Simulation Study.

3.8.3 Annotated Bibliography.

3.9 Conclusion.

4 Data Quality.

4.1 Introduction.

4.2 The Meaning of Data Quality.

4.2.1 An Example.

4.2.2 Data Glitches.

4.2.3 Gaps in Time Series Records.

4.2.4 Conventional Definition.

4.2.5 Times Have Changed.

4.2.6 Annotated Bibliography.

4.3 Updating DQ Metrics: Data Quality Continuum.

4.3.1 Data Gathering.

4.3.2 Data Delivery.

4.3.3 Data Monitoring.

4.3.4 Data Storage.

4.3.5 Data Integration.

4.3.6 Data Retrieval.

4.3.7 Data Mining/Analysis.

4.3.8 Annotated Bibliography.

4.4 The Meaning of Data Quality Revisited.

4.4.1 Data Interpretation.

4.4.2 Data Suitability.

4.4.3 Dataset Type.

4.4.4 Attribute Type.

4.4.5 Application Type.

4.4.6 Data Quality - A Many Splendored Thing.

4.4.7 Annotated Bibliography.

4.5 Measuring Data Quality.

4.5.1 DQ Components and Their Measurement.

4.5.2 Combining DQ Metrics.

4.6 The DQ Process.

4.7 Conclusion.

4.7.1 Four Complementary Approaches.

4.7.2 Annotated Bibliography.

5 Data Quality: Techniques and Algorithms.

5.1 Introduction.

5.2 DQ Tools Based on Statistical Techniques.

5.2.1 Missing Values.

5.2.2 Incomplete Data.

5.2.3 Outliers.

5.2.4 Time Series Outliers: A Case Study.

5.2.5 Goodness­of­Fit.

5.2.6 Annotated Bibliography.

5.3 Database Techniques for DQ.

5.3.1 What is a Relational Database?

5.3.2 Why Are Data Dirty?

5.3.3 Extraction, Transformation, and Loading (ETL).

5.3.4 Approximate Matching.

5.3.5 Database Profiling.

5.3.6 Annotated Bibliography.

5.4 Metadata and Domain Expertise.

5.4.1 Lineage Tracing.

5.4.2 Annotated Bibliography.

5.5 Measuring Data Quality?

5.5.1 Inventory Building - A Case Study.

5.5.2 Learning and Recommendations.

5.6 Data Quality and Its Challenges.
TAMRAPARNI DASU, PhD, and THEODORE JOHNSON, PhD, are both members of the technical staff at AT&T Labs-Research in Florham Park, New Jersey.
"Statisticians not conversant with today s statistical take on DQ should read this book...and be stimulated to do important research in DQ." ( Journal of the American Statistical Association , March 2006)
"...uniquely integrates several approaches for data cleaning and exploration..." ( Journal of Statistical Computation & Simulation , April 2004)

"...provides a uniquely integrated approach...for serious data analysts everywhere..." ( Zentralblatt Math , Vol. 1027, 2004)
Kundenbewertungen zu Dasu, Johnson „Data Mining“
Noch keine Bewertungen vorhanden
Zur Rangliste der Rezensenten
Veröffentlichen Sie Ihre Kundenbewertung:
Kundenbewertung schreiben
Unsere Leistungen auf einen Klick
Unser Service für Sie
Zahlungsmethoden
Bequem, einfach und sicher mit eBook.de. mehr Infos akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal mehr Infos
Geprüfte Qualität
  • Schnelle Downloads
  • Datenschutz
  • Sichere Zahlung
  • SSL-Verschlüsselung
Servicehotline
+49 (0)40 4223 6096
Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 18.00 Uhr
Chat
Ihre E-Mail-Adresse eintragen und kostenlos informiert werden:
2 Diese Artikel unterliegen nicht der Preisbindung, die Preisbindung dieser Artikel wurde aufgehoben oder der Preis wurde vom Verlag gesenkt. Die jeweils zutreffende Alternative wird Ihnen auf der Artikelseite dargestellt. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

3 Durch Öffnen der Leseprobe willigen Sie ein, dass Daten an den Anbieter der Leseprobe übermittelt werden.

4 Der gebundene Preis dieses Artikels wird nach Ablauf des auf der Artikelseite dargestellten Datums vom Verlag angehoben.

5 Der Preisvergleich bezieht sich auf die unverbindliche Preisempfehlung (UVP) des Herstellers.

6 Der gebundene Preis dieses Artikels wurde vom Verlag gesenkt. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

7 Die Preisbindung dieses Artikels wurde aufgehoben. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

10 Ihr Gutschein NEUESJAHR gilt bis einschließlich 31.01.2022. Sie können den Gutschein ausschließlich online einlösen unter www.eBook.de. Der Gutschein ist nur gültig für Kalender, die nicht der gesetzlichen Preisbindung unterliegen. Der Gutschein ist nicht mit anderen Gutscheinen und Geschenkkarten kombinierbar. Eine Barauszahlung ist nicht möglich. Ein Weiterverkauf und der Handel des Gutscheincodes sind nicht gestattet.

* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier

eBook.de - Meine Bücher immer dabei
eBook.de ist eine Marke der Hugendubel Digital GmbH & Co. KG
Folgen Sie uns unter: