NEU: Das eBook.de Hörbuch Abo - jederzeit, überall, für nur 7,95 € monatlich!
Jetzt entdecken
mehr erfahren
Produktbild: Neuronale Netze und Deep Learning kapieren | Andrew W. Trask
Produktbild: Neuronale Netze und Deep Learning kapieren | Andrew W. Trask

Neuronale Netze und Deep Learning kapieren

Der einfache Praxiseinstieg mit Beispielen in Python

(0 Bewertungen)15
Buch (kartoniert)
Buch (kartoniert)
29,99 €inkl. Mwst.
Zustellung: Mo, 22.09. - Mi, 24.09.
Sofort lieferbar
Versandkostenfrei
Empfehlen
  • Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-Algorithmen
  • Anschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPy
  • Keine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlich

Deep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht.

Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz.

Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.

Aus dem Inhalt:
  • Parametrische und nichtparametrische Modelle
  • Überwachtes und unüberwachtes Lernen
  • Vorhersagen mit mehreren Ein- und Ausgaben
  • Fehler messen und verringern
  • Hot und Cold Learning
  • Batch- und stochastischer Gradientenabstieg
  • Überanpassung vermeiden
  • Generalisierung
  • Dropout-Verfahren
  • Backpropagation und Forward Propagation
  • Bilderkennung
  • Verarbeitung natürlicher Sprache (NLP)
  • Sprachmodellierung
  • Aktivierungsfunktionen
    • Sigmoid-Funktion
    • Tangens hyperbolicus
    • Softmax
  • Convolutional Neural Networks (CNNs)
  • Recurrent Neural Networks (RNNs)
  • Long Short-Term Memory (LSTM)
  • Deep-Learning-Framework erstellen

Produktdetails

Erscheinungsdatum
30. November 2019
Sprache
deutsch
Auflage
2020
Seitenanzahl
354
Reihe
mitp Professional
Autor/Autorin
Andrew W. Trask
Verlag/Hersteller
Produktart
kartoniert
Gewicht
610 g
Größe (L/B/H)
242/172/23 mm
Sonstiges
Großformatiges Paperback. Klappenbroschur
ISBN
9783747500156

Portrait

Andrew W. Trask

Andrew W. Trask ist Doktorand an der Oxford University und als Research Scientist für DeepMind tätig. Zuvor war er Researcher und Analytics Product Manager bei Digital Reasoning, wo er u. a. das größte künstliche Neuronale Netz der Welt trainierte.

Pressestimmen


»Wer nicht nur Programmzeilen abtippen, sondern auch die inneren Zusammenhänge des maschinellen Lernens verstehen will, ist bei diesem Buch genau richtig. Es lohnt sich, genug Zeit zu investieren, um die Beispiele nachzuprogrammieren. « (iX, 09/2020)

»Wer als Net-Entwickler in die Welt der Künstlichen Intelligenz einzusteigen versucht, hat zunächst eine etwas schwierige Ausgangsposition. Das vorliegende Buch ist aber eines jener Werke, dessen Kauf man letztendlich nicht bereut der Schwierigkeitsgrad bzw. die Menge an mathematischen Ausführungen ist gelungen gewählt, so dass man sich weder langweilt noch überfordert fühlt. « (windows. developer, 09/2020)

»Durch sinnvoll gewählte Abstraktionen vermittelt (der Autor) Python-Programmierern auch ohne fortgeschrittene Mathematik solides Grundwissen über neuronale Netze und Deep Learning. [ ] Anstatt zu theoretisieren, zündet er ein Feuerwerk von Anregungen für Programmierpraktiker. « (c t, 06/2020)

»Das vorliegende Buch [. . .] erklärt mit vielen Beispielen in einfacher Weise, wie künstliche neuronale Netze lernen und wie sie mit Deep-Learning-Verfahren trainiert werden können. [. . .] Didaktisch gut aufgebaut. « (Ekz Bibliotheks-Service, 02/2020)

Bewertungen

0 Bewertungen

Es wurden noch keine Bewertungen abgegeben. Schreiben Sie die erste Bewertung zu "Neuronale Netze und Deep Learning kapieren" und helfen Sie damit anderen bei der Kaufentscheidung.

Andrew W. Trask: Neuronale Netze und Deep Learning kapieren bei ebook.de. Online bestellen oder in der Filiale abholen.