
Generative Modelle haben sich zu einem der spannendsten Themenbereiche der Künstlichen Intelligenz entwickelt: Mit generativem Deep Learning ist es inzwischen möglich, einer Maschine das Malen, Schreiben oder auch das Komponieren von Musik beizubringen - kreative Fähigkeiten, die bisher dem Menschen vorbehalten waren. Mit diesem praxisnahen Buch können Data Scientists einige der eindrucksvollsten generativen Deep-Learning-Modelle nachbilden, wie z. B. Generative Adversarial Networks (GANs), Variational Autoencoder (VAEs), Encoder-Decoder- sowie World-Modelle.
- Entdecken Sie, wie Variational Autoencoder den Gesichtsausdruck auf Fotos verändern können
- Erstellen Sie praktische GAN-Beispiele von Grund auf und nutzen Sie CycleGAN zur Stilübertragung und MuseGAN zum Generieren von Musik
- Verwenden Sie rekurrente generative Modelle, um Text zu erzeugen, und lernen Sie, wie Sie diese Modelle mit dem Attention-Mechanismus verbessern können
- Erfahren Sie, wie generatives Deep Learning Agenten dabei unterstützen kann, Aufgaben im Rahmen des Reinforcement Learning zu erfüllen
- Lernen Sie die Architektur von Transformern (BERT, GPT-2) und Bilderzeugungsmodellen wie ProGAN und StyleGAN kennen
"Dieses Buch ist eine leicht zugängliche Einführung in das Deep-Learning-Toolkit für generatives Modellieren. Wenn Sie ein kreativer Praktiker sind, der es liebt, an Code zu basteln, und Deep Learning für eigene Aufgaben nutzen möchte, dann ist dieses Buch genau das Richtige für Sie."
- David Ha, Research Scientist bei Google Brain
Es wurden noch keine Bewertungen abgegeben. Schreiben Sie die erste Bewertung zu "Generatives Deep Learning" und helfen Sie damit anderen bei der Kaufentscheidung.