
Inhaltsverzeichnis
The Most Important Step to Understand Quantum Computing. - First Impression. - Basis, Basis Vectors, and Inner Product. - Orthonormal Basis, Bra-Ket Notation, and Measurement. - Changing Basis, Uncertainty Principle, and Bra-ket Operations. - Observables, Operators, Eigenvectors, and Eigenvalues. - Pauli Spin Matrices, Adjoint Matrix, and Hermitian Matrix. - Operator Rules, Real Eigenvalues, and Projection Operator. - Eigenvalue and Matrix Diagonalization; Unitary Matrix. - Unitary Transformation, Completeness, and Construction of Operator. - Hilbert Space, Tensor Product, and Multi-Qubit. - Tensor Product of Operators, Partial Measurement, and Matrix Representation in a Given Basis. - Quantum Register and Data Processing, Entanglement and the Bell States. - Concepts Review, Density Matrix, and Entanglement Entropy. - Quantum Gate Introduction; NOT and C-NOT Gates. - SWAP, Phase Shift and CC-NOT (Toffoli) Gates. - Walsh-Hadamard Gate and its Properties. - Two Quantum Circuit Examples. - No-Cloning Theorem and Quantum Teleportation I. - Quantum Teleportation II and Entanglement Swapping. - Deutsch Algorithm. - Quantum Oracles and Construction of Quantum Gate. - Grover s Algorithm: I. - Grover s Algorithm: II. - Quantum Fourier Transform I. - Quantum Fourier Transform II. - Bloch Sphere and Single-Qubit Arbitrary Unitary Gate. - Quantum Phase Estimation. - Shor s Algorithm. - The Last But Not the Least. .
Es wurden noch keine Bewertungen abgegeben. Schreiben Sie die erste Bewertung zu "Introduction to Quantum Computing" und helfen Sie damit anderen bei der Kaufentscheidung.