eBook.de : Ihr Online Shop für eBooks, Reader, Downloads und Bücher
Connect 01/2015 eBook-Shops: Testsieger im epub Angebot, Testurteil: gut Die Welt: Kundenorientierte Internetseiten Prädikat GOLD
+49 (0)40 4223 6096

Philosophie der Mathematik

Sofort lieferbar (Download)
eBook pdf

Dieses eBook können Sie auf allen Geräten lesen, die PDF-fähig sind, z.B. auf den tolino oder Sony Readern.

Häufig gestellte Fragen zu PDF eBooks

eBook pdf € 99,95* inkl. MwSt.
Machen Sie jemandem eine Freude und
verschenken Sie einen Download!
Ganz einfach Downloads verschenken - so funktioniert's:
  1. 1 Geben Sie die Adresse der Person ein, die Sie beschenken
    möchten. Mit einer lieben Grußbotschaft verleihen Sie Ihrem
    Geschenk eine persönliche Note.
  2. 2 Bezahlen Sie das Geschenk bequem per Kreditkarte,
    Überweisung oder Lastschrift.
  3. 3 Der/die Geschenkempfänger/in bekommt von uns Ihre Nachricht
    und eine Anleitung zum Downloaden Ihres Geschenks!
Dieser Artikel ist auch verfügbar als:

Produktdetails

Titel: Philosophie der Mathematik
Autor/en: Thomas Bedürftig, Roman Murawski

ISBN: 3110220601
EAN: 9783110220605
Format:  PDF ohne DRM

Dateigröße in MByte: 1.
Gruyter, Walter de GmbH

26. Mai 2010 - pdf eBook - 333 Seiten

An elementary introduction to the philosophy in mathematics.
Aus dem Inhalt:
  • Von Pythagoras bis Gödel
  • Zahlbegriff, Unendlichkeit, Kontinuum
  • Die mathematische Wende im 19. Jahrhundert
  • Mathematische Grundlagen: Mengenlehre, Logik, Axiomatik
  • Was ist Philosophie der Mathematik?
  • Kurzporträts ausgewählter Philosophen und Mathematiker
Thomas Bedürftig, Leibniz University Hannover; Roman Murawski, Adam Mickiewicz University, Posnan, Poland.

Kapitel 3 Über Grundfragen der Philosophie der Mathematik (S. 138-139)

Auf dem Weg zu den reellen Zahlen im Kapitel 1 haben sich mathematisch-philosophische Fragen ergeben, auf die wir in unserem Überblick über die Geschichte der Philosophie der Mathematik im Kapitel 2 immer wieder stießen. Sie gehören zu den Grundfragen der Philosophie der Mathematik. Wir wollen diese Fragen jetzt neu aufnehmen und Antworten suchen, in denen wir uns an den im Kapitel 2 geschilderten Positionen, Konzepten und Richtungen orientieren. So verschieden die Positionen waren, so verschieden werden die Antworten sein.

Wir gehen zuerst noch einmal zusammenfassend auf die Frage nach den Zahlen ein, über die wir diverse Ansichten kennengelernt haben, behandeln die unterschiedlichen Haltungen dem Unendlichen gegenüber, verfolgen historische und aktuelle Auffassungen zum klassischen Kontinuum, in denen die Frage nach dem unendlich Kleinen, den Infinitesimalien auftaucht, betrachten das Verhältnis von Größen und Zahlen und beobachten, wie das anschauliche Kontinuum und die Größen aus der Mathematik ihren Abschied nehmen. In einem Rückblick am Ende dieses Kapitels greifen wir noch einmal auf der Basis der gewonnenen Einsichten direkt die Fragen auf, die uns im Kapitel 1 begegneten.

3.1 Zum Zahlbegriff

Die erste fundamentale Frage war und ist die nach den natürlichen Zahlen. Bei ihnen beginnt der Weg zu den reellen Zahlen. Was sind diese natürlichen Zahlen, was ist ihr Wesen, was die Art ihrer Existenz? Wir haben die unterschiedlichen Ansichten über die natürlichen Zahlen, wenn diese erkennbar waren, in unseren Schilderungen der vielen mathematikphilosophischen Positionen im Kapitel 2 hervorgehoben. Wir haben so ein breites Panorama von Meinungen über diesen fundamentalen mathematischen Gegenstand
vor uns, das von vieldeutiger Mystik bis in die völlige Bedeutungslosigkeit reicht.

Wir blicken noch einmal zurück, beschränken uns dabei auf einige wesentliche Ansichten, rekapitulieren in Kurzform die Charakterisierungen, über die wir berichtet haben, und ziehen schließlich vor diesem Hintergrund ein Resümee. Rationalistische Elemente, die Strukturen des Denkens berücksichtigen, heben wir im folgenden Abriss nicht gesondert hervor, da zumindest Spuren davon in fast allen Auffassungen zu finden sind.

3.1.1 Überblick über einige Ansichten

Zahlen waren bei den Pythagoreern Elemente einer höheren Welt, die auf die physischen Dinge wirkten und sie formten. Bei Platon stiegen sie ein wenig herab und vermittelten zwischen dem „Himmel der Ideen“ und der materiellen Wirklichkeit. Bei Aristoteles waren sie vollends in der Wirklichkeit angekommen und wurden zu Formkräften in den Dingen, die der Mensch in einer Art Abstraktion erkennt. Euklid charaktisiert die Zahlen kurz und mathematisch knapp als aus Einheiten zusammengesetzte Vielheiten. Für Nikolaus von Kues waren sie durch Vergleich und Unterscheidung gewonnene Rekonstruktionen der Zahlen, die von Gott in die Dinge gelegt sind. Kant verlegt die Zahlen ganz in die rationalen Strukturen des menschlichen Verstandes: Sie sind Schemata des Verstandes, die in der Anschauungsform der Zeit gegebene Einheiten zusammenfassen, und arithmetische Sätze über sie sind synthetische Urteile a priori. Der Empirist Mill bezog eine extreme Gegenposition: Zahlen haben einzig und allein ihren Ursprung in der Realität. Sie sind das Resultat sukzessiv wiederkehrender Empfindungen. Gauß verstand die Zahlen noch von den geometrischen Größen her. Sie waren ihre Vervielfacher. In Cantors Auffassung finden wir idealistische und empiristische Elemente: Zahlen sind einerseits ideelle Realit&a
uml;ten und andererseits Projektionen von Mengen und durch Abstraktion erworben. Dedekind denkt strukturell und hält Zahlen für Abstraktionen von Stellen in unendlichen Zählreihen. Für den Logizisten Frege sind Zahlen als Anzahlen Elemente der Logik, für den Intuitionisten Brouwer inhaltslose Abstraktionen des Zeitempfindens. Für den Konstruktivisten Thiel waren sie fiktive Gegenstände, die durch Abstraktion von den Zählzeichen in unterschiedlichen Zählzeichensystemen entstehen und für den Formalisten Hilbert im Grunde bedeutungslose Zeichen. Piaget und Damerow halten Zahlen für ordinale Bestandteile umfassende – Anzahlen, die in individuellen kognitiven Konstruktionen ausgehend von Handlungen an konkreten Objekten entstehen. In ihren Zeichensystemen, die auf die Zahlen zurückwirken, entdeckt Damerow Elemente einer sozialen und historischen Entwicklung.


Dieses eBook wird im PDF-Format ohne Kopierschutz geliefert. Sie können dieses eBook auf vielen gängigen Endgeräten lesen.

Sie können dieses eBook auf vielen gängigen Endgeräten lesen.

Für welche Geräte?
Sie können das eBook auf allen Lesegeräten, in Apps und in Lesesoftware öffnen, die PDF unterstützen:

  • tolino Reader
    Öffnen Sie das eBook nach der automatischen Synchronisation auf dem Reader oder übertragen Sie das eBook auf Ihr tolino Gerät mit einer kostenlosen Software wie beispielsweise Adobe Digital Editions.

  • Sony Reader und andere eBook Reader
    Laden Sie das eBook direkt auf dem Reader im eBook.de-Shop herunter oder übertragen Sie es mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions.

  • Tablets und Smartphones
    Installieren Sie die tolino Lese-App für Android und iOS oder verwenden Sie eine andere Lese-App für PDF-eBooks.

  • PC und Mac
    Lesen Sie das eBook direkt nach dem Herunterladen über "Jetzt lesen" im Browser, oder mit der kostenlosen Lesesoftware Adobe Digital Editions.

Bitte beachten Sie: Dieses eBook ist nicht auf Kindle-Geräten lesbar.

Ihr erstes eBook?
Hier erhalten Sie alle Informationen rund um die digitalen Bücher für Neueinsteiger.

Kundenbewertungen zu Thomas Bedürftig, R… „Philosophie der Mathematik“
Noch keine Bewertungen vorhanden
Zur Rangliste der Rezensenten
Veröffentlichen Sie Ihre Kundenbewertung:
Kundenbewertung schreiben
Unsere Leistungen auf einen Klick
Unser Service für Sie
Zahlungsmethoden
Bequem, einfach und sicher mit eBook.de. mehr Infos akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal mehr Infos
Geprüfte Qualität
  • Schnelle Downloads
  • Datenschutz
  • Sichere Zahlung
  • SSL-Verschlüsselung
Servicehotline
+49 (0)40 4223 6096
Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 18.00 Uhr
Chat
Ihre E-Mail-Adresse eintragen und kostenlos informiert werden:
1 Ihr Gutschein HERBST15 gilt bis einschließlich 02.11.2020. Sie können den Gutschein ausschließlich online einlösen unter www.eBook.de. Der Gutschein ist nicht gültig für gesetzlich preisgebundene Artikel (deutschsprachige Bücher und eBooks) sowie für preisgebundene Kalender, Tonieboxen, tolino eReader und tolino select. Der Gutschein ist nicht mit anderen Gutscheinen und Geschenkkarten kombinierbar. Eine Barauszahlung ist nicht möglich. Ein Weiterverkauf und der Handel des Gutscheincodes sind nicht gestattet.

2 Diese Artikel unterliegen nicht der Preisbindung, die Preisbindung dieser Artikel wurde aufgehoben oder der Preis wurde vom Verlag gesenkt. Die jeweils zutreffende Alternative wird Ihnen auf der Artikelseite dargestellt. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

4 Der gebundene Preis dieses Artikels wird nach Ablauf des auf der Artikelseite dargestellten Datums vom Verlag angehoben.

5 Der Preisvergleich bezieht sich auf die unverbindliche Preisempfehlung (UVP) des Herstellers.

6 Der gebundene Preis dieses Artikels wurde vom Verlag gesenkt. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

7 Die Preisbindung dieses Artikels wurde aufgehoben. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.

eBook.de - Meine Bücher immer dabei
eBook.de ist eine Marke der Hugendubel Digital GmbH & Co. KG
Folgen Sie uns unter: