New possibilities have recently emerged for producing optical beams with complex and intricate structures, and for the non-contact optical manipulation of matter. Structured Light and Its Applications fully describes the electromagnetic theory, optical properties, methods and applications associated with this new technology. Detailed discussions are given of unique beam characteristics, such as optical vortices and other wavefront structures, the associated phase properties and photonic aspects, along with applications ranging from cold atom manipulation to optically driven micromachines.
Features include:
- Comprehensive and authoritative treatments of the latest research in this area of nanophotonics, written by the leading researchers
- Accounts of numerous microfluidics, nanofabrication, quantum informatics and optical manipulation applications
- Coverage that fully spans the subject area, from fundamental theory and simulations to experimental methods and results
Graduate students and established researchers in academia, national laboratories and industry will find this book an invaluable guide to the latest technologies in this rapidly developing field.
- Comprehensive and definitive source of the latest research in nanotechnology written by the leading people in the field
- From theory to applications - all is presented in detail
- Editor is Chair of the SPIE Nanotechnology Technical Group and is leading the way in generation and manipulation of complex beams
Inhaltsverzeichnis
1;Front cover;1 2;Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces;4 3;Copyright page;5 4;Contents;6 5;Author Affiliations;12 6;Preface;14 7;Chapter 1. Introduction to Phase-Structured Electromagnetic Waves;16 7.1;1.1 Introduction;16 7.2;1.2 Laguerre-Gaussian Beams and Orbital Angular Momentum;17 7.3;1.3 Bessel and Mathieu Beams;22 7.4;1.4 General Solution of the Wave Equation;23 7.5;1.5 Classical or Quantum?;23 7.6;1.6 Creating Laguerre-Gaussian Beams with Lenses and Holograms;24 7.7;1.7 Coherence: Spatial and Temporal;26 7.8;1.8 Transformations Between Basis Sets;27 7.9;1.9 Conclusion;29 7.10;References;30 8;Chapter 2. Angular Momentum and Vortices in Optics;34 8.1;2.1 Introduction;34 8.2;2.2 Classical Angular Momentum of Fields and Particles;37 8.3;2.3 Separation of Radiative Angular Momentum in L and S;39 8.4;2.4 Multipole Fields and Their Vortex Structure;42 8.5;2.5 Angular Momentum of Monochromatic Paraxial Beams;48 8.6;2.6 Quantum Description of Paraxial Beams;55 8.7;2.7 Nonmonochromatic Paraxial Beam;57 8.8;2.8 Operator Description of Classical Paraxial Beams;63 8.9;2.9 Dynamics of Optical Vortices;70 8.10;2.10 Conclusion;74 8.11;References;75 9;Chapter 3. Singular Optics and Phase Properties;78 9.1;3.1 Fundamental Phase Singularities;79 9.2;3.2 Beams with Composite Vortices;84 9.3;3.3 Noninteger Vortex Beams;87 9.4;3.4 Propagation Dynamics;89 9.5;3.5 Conclusions;89 9.6;Acknowledgments;90 9.7;References;90 10;Chapter 4. Nanoscale Optics: Interparticle Forces;94 10.1;4.1 Introduction;94 10.2;4.2 QED Description of Optically Induced Pair Forces;97 10.3;4.3 Overview of Applications;113 10.4;4.4 Discussion;116 10.5;Acknowledgments;117 10.6;References;117 11;Chapter 5. Near-Field Optical Micromanipulation;122 11.1;5.1 Introduction;122 11.2;5.2 Theoretical Considerations for Near-Field Trapping;126 11.3;5.3 Experimental Guiding and Trapping of Particles in the Near Field;128 11.4;5.4 Emergent Themes in t
he Near Field;144 11.5;5.5 Conclusions;149 11.6;Acknowledgments;149 11.7;References;149 12;Chapter 6. Holographic Optical Tweezers;154 12.1;6.1 Background;154 12.2;6.2 Example Rationale for Constructing Extended Arrays of Traps;155 12.3;6.3 Experimental Details;157 12.4;6.4 Algorithms for Holographic Optical Traps;164 12.5;6.5 The Future of Holographic Optical Tweezers;177 12.6;Acknowledgments;177 12.7;References;177 13;Chapter 7. Atomic and Molecular Manipulation Using Structured Light;184 13.1;7.1 Introduction;184 13.2;7.2 A Brief Overview;185 13.3;7.3 Transfer of OAM to Atoms and Molecules;186 13.4;7.4 Doppler Forces and Torques;187 13.5;7.5 The Doppler Shift;195 13.6;7.6 Rotational Effects on Liquid Crystals;201 13.7;7.7 Comments and Conclusions;206 13.8;Acknowledgments;207 13.9;References;207 14;Chapter 8. Optical Vortex Trapping and the Dynamics of Particle Rotation;210 14.1;8.1 Introduction;210 14.2;8.2 Computational Electromagnetic Modeling of Optical Trapping;211 14.3;8.3 Electromagnetic Angular Momentum;214 14.4;8.4 Electromagnetic Angular Momentum of Paraxial and Nonparaxial Optical Vortices;217 14.5;8.5 Nonparaxial Optical Vortices;220 14.6;8.6 Trapping in Vortex Beams;226 14.7;8.7 Symmetry and Optical Torque;233 14.8;8.8 Zero Angular Momentum Optical Vortices;241 14.9;8.9 Gaussian ``Longitudinal'' Optical Vortex;243 14.10;8.10 Conclusion;246 14.11;References;246 15;Chapter 9. Rotation of Particles in Optical Tweezers;252 15.1;9.1 Introduction;252 15.2;9.2 Using Intensity Shaped Beams to Orient and Rotate Trapped Objects;253 15.3;9.3 Angular Momentum Transfer to Particles Held in Optical Tweezers;255 15.4;9.4 Out of Plane Rotation in Optical Tweezers;257 15.5;9.5 Rotation of Helically Shaped Particles in Optical Tweezers;258 15.6;9.6 Applications of Rotational Control in Optical Tweezers;259 15.7;References;262 16;Chapter 10. Rheological and Viscometric Methods;264 16.1;10.1 Introduction;264 16.2;10.2 Optical Torque Measurement;266 16.3;10.3 A Rotating O
ptical Tweezers-Based Microviscometer;269 16.4;10.4 Applications;279 16.5;Conclusion;283 16.6;References;283 17;Chapter 11. Orbital Angular Momentum in Quantum Communication and Information;286 17.1;11.1 Sending and Receiving Quantum Information;288 17.2;11.2 Exploring the OAM State Space;295 17.3;11.3 Quantum Protocols;301 17.4;11.4 Conclusions and Outlook;305 17.5;Acknowledgments;306 17.6;References;306 18;Chapter 12. Optical Manipulation of Ultracold Atoms;310 18.1;12.1 Background;310 18.2;12.2 Optical Forces and Atom Traps ;311 18.3;12.3 The Quantum Gas: Bose-Einstein Condensates;314 18.4;12.4 Light-Induced Gauge Potentials for Cold Atoms;323 18.5;12.5 Light-Induced Gauge Potentials for the Lambda Scheme;326 18.6;12.6 Light-Induced Gauge Fields for a Tripod Scheme;335 18.7;12.7 Ultra-Relativistic Behavior of Cold Atoms in Light-Induced Gauge Potentials;338 18.8;12.8 Final Remarks;344 18.9;References;345 19;Index;350 20;Color Insert;358