Optics clearly explains the principles of optics using excellent pedagogy to support student learning.
Beginning with introductory ideas and equations, K. K. Sharma takes the reader through the world of optics by detailing problems encountered, advanced subjects, and actual applications. Elegantly written, this book rigorously examines optics with over 300 illustrations and several problems in each chapter.
The book begins with light propagation in anisotropic media considered much later in most books. Nearly one third of the book deals with applications of optics. This simple idea of merging the sometimes overwhelming and dry subject of optics with real world applications will create better future engineers. It will make 'optics' jump off the page for readers and they will see it take shape in the world around them. In presenting optics practically, as well as theoretically, readers will come away not only with a complete knowledge base but a context in which to place it.
This book is recommended for optical engineers, libraries, senior undergraduate students, graduate students, and professors.
- Strong emphasis on applications to demonstrate the relevance of the theory
- Includes chapter on problem solving of ray deviations, focusing errors, and distortion
- Problems are included at the end of each chapter for thorough understanding of this dense subject matter
Inhaltsverzeichnis
1;Front Cover;1 2;Title Page;4 3;Copyright Page;5 4;Table of Contents;8 5;Preface;16 6;Acknowledgements;18 7;Chapter 1 LIGHT WAVES;20 7.1;1.1 Introduction;20 7.2;1.2 Maxwells Equations;20 7.3;1.3 The Wave Equation;25 7.3.1;1.3.1 Plane Wave Solution;28 7.3.2;1.3.2 Spherical and Cylindrical Wave Solutions;31 7.3.3;1.3.3 Beam-Like Solutions;32 7.4;1.4 Homogeneous and Inhomogeneous Waves;37 7.5;1.5 Energy Density and Poynting Vector;40 7.6;1.6 Boundary Conditions;42 7.6.1;1.6.1 Continuity of the Normal Components;42 7.6.2;1.6.2 Continuity of the Tangential Components;43 7.7;1.7 Reflection and Transmission at a Boundary;44 7.7.1;1.7.1 External Reflections;49 7.7.2;1.7.2 Reflectance and Transmittance;52 7.7.3;1.7.3 Internal Reflections;55 7.7.4;1.7.4 Frustrated Total Internal Reflection;59 7.7.5;1.7.5 Reflection from a Metallic Surface;61 7.8;1.8 Passage of Light through a Prism;63 7.9;1.9 Dispersion;69 7.9.1;1.9.1 Dispersion in Dilute Gases;71 7.9.2;1.9.2 Dispersion in Dense Media;72 7.9.3;1.9.3 Group and Signal Velocities;74 7.10;1.10 Propagation of light in Anisotropic Media;76 7.10.1;1.10.1 Fresnel Equation;79 7.10.2;1.10.2 Geometrical Constructions;81 7.10.3;1.10.3 Uniaxial Crystals;83 7.10.4;1.10.4 Biaxial Crystals;86 7.10.5;1.10.5 Double Refraction;88 7.10.6;1.10.6 Polarizing Prisms;90 7.11;1.11 References;92 7.12;1.12 Problems;92 8;Chapter 2 COHERENCE OF LIGHT WAVES;96 8.1;2.1 Polychromatic Light;96 8.1.1;2.1.1 Quasi-monochromatic Light;99 8.2;2.2 Partially Coherent Light;99 8.2.1;2.2.1 Spatial and Temporal Coherence;100 8.3;2.3 Complex Coherence Functions;101 8.3.1;2.3.1 Stationary and Time-Averaged Fields;102 8.3.2;2.3.2 Intensity of Polychromatic Light;103 8.4;2.4 Self Coherence;105 8.4.1;2.4.1 Complex Degree of Self Coherence;107 8.4.2;2.4.2 Fourier Transform Spectroscopy;113 8.5;2.5 Mutual Coherence;115 8.5.1;2.5.1 Complex Degree of Mutual Coherence;118 8.5.2;2.5.2 Coherence of Light from an Extended Source;121 8.5.3;2.5.3 Michelson Stellar Interferometer;123
8.6;2.6 Van Cittert-Zernike Theorem;125 8.6.1;2.6.1 Incoherent Quasi-monochromatic Source of Circular Cross-Section;128 8.6.2;2.6.2 Area of Coherence;130 8.7;2.7 Intensity Correlations;131 8.7.1;2.7.1 Hanbury Brown and Twiss Experiment;132 8.7.2;2.7.2 Photon Statistics;133 8.8;2.8 References;135 8.9;2.9 Problems;136 9;Chapter 3 POLARIZATION OF LIGHT WAVES;140 9.1;3.1 State of Polarization;140 9.1.1;3.1.1 Linear Polarization;140 9.1.2;3.1.2 Elliptical and Circular Polarizations;142 9.1.3;3.1.3 Helicity of Light Waves;144 9.2;3.2 The Polarization Ellipse;146 9.3;3.3 Matrix Representation of Polarization States;148 9.3.1;3.3.1 The Jones Vecctors;148 9.3.2;3.3.2 Jones Matrices for Linear Optical Devices;153 9.4;3.4 The Stokes Parameters;158 9.4.1;3.4.1 Monochromatic Light;160 9.4.2;3.4.2 Quasi-monochromatic Light;161 9.4.3;3.4.3 Completely Unpolarized Light;163 9.4.4;3.4.4 Mixture of Mutually Incoherent Light Fields;164 9.4.5;3.4.5 Geometrical Interpretation of Stokes Parameters;166 9.5;3.5 The Poincaré Sphere;167 9.6;3.6 Mueller Matrices;169 9.6.1;3.6.1 Linear Polarizer;170 9.6.2;3.6.2 Phase Retarder;171 9.7;3.7 The Coherency Matrix;172 9.8;3.8 Pancharatnam Theorem;174 9.9;3.9 References;175 9.10;3.10 Problems;175 10;Chapter 4 GEOMETRICAL OPTICS;178 10.1;4.1 Introduction;178 10.1.1;4.1.1 Paraxial Approximation;179 10.2;4.2 Ray Matrix Approach to Gaussian Optics;180 10.2.1;4.2.1 The Lens Matrix;182 10.2.2;4.2.2 Cardinal Points of a Lens;187 10.2.3;4.2.3 Ray Transformation between Principal Planes;191 10.2.4;4.2.4 Ray Matrix for Image Formation;196 10.2.5;4.2.5 Ray Tracing;202 10.2.6;4.2.6 Ray Matrix for Reflection;203 10.3;4.3 Optical Systems;206 10.3.1;4.3.1 Apertures and Stops;206 10.3.2;4.3.2 Single Lens Magnifier;208 10.3.3;4.3.3 Single Lens Camera;211 10.3.4;4.3.4 Two-Lens Optical Systems;212 10.3.5;4.3.5 The Microscope;214 10.3.6;4.3.6 The Telescope;218 10.3.7;4.3.7 Telephoto Lens;221 10.4;4.4 Optics of a Laser Cavity;223 10.5;4.5 Optics of the Human Eye;228 10.5
.1;4.5.1 Defects of the Human Eye;230 10.6;4.6 Cylindrical Lens;231 10.7;4.7 References;232 10.8;4.8 Problems;232 11;Chapter 5 LENS ABERRATIONS;236 11.1;5.1 Stigmatic Image;236 11.2;5.2 Aplanatic Points;237 11.3;5.3 Image Formation with Non-paraxial Rays;238 11.3.1;5.3.1 Tangential and Sagittal Planes;240 11.4;5.4 Wavefront Aberration Function;241 11.4.1;5.4.1 Ray Deviations;245 11.4.2;5.4.2 Focusing Errors;247 11.5;5.5 Primary Aberrations;249 11.5.1;5.5.1 Spherical Aberration;249 11.5.2;5.5.2 Coma;253 11.5.3;5.5.3 Astigmatism;260 11.5.4;5.5.4 Field Curvature;265 11.5.5;5.5.5 Distortion;267 11.6;5.6 Chromatic Aberration;268 11.7;5.7 References;271 11.8;5.8 Problems;271 12;Chapter 6 INTERFERENCE OF LIGHT WAVES;274 12.1;6.1 Interference;274 12.2;6.2 Two-Wave Interference;275 12.2.1;6.2.1 Interference by Division of Wavefront;280 12.2.2;6.2.2 Interference by Division of Amplitude;282 12.2.3;6.2.3 Testing Flatness of Surfaces;285 12.3;6.3 Interference with Extended Sources;287 12.3.1;6.3.1 Haidinger Fringes;288 12.3.2;6.3.2 Fizeau Fringes;290 12.3.3;6.3.3 Newtons Rings;291 12.3.4;6.3.4 Straight Fringes;293 12.4;6.4 Two-Wave Interferometers;294 12.4.1;6.4.1 Michelson Interferometer;294 12.4.2;6.4.2 TwymanGreen Interferometer;299 12.4.3;6.4.3 MachZehnder Interferometer;301 12.4.4;6.4.4 Sagnac Interferometer;302 12.5;6.5 Multi-wave Interference;302 12.5.1;6.5.1 Intensity Distribution in Multi-wave Interference;304 12.6;6.6 FabryPerot Interferometer;308 12.6.1;6.6.1 Widths of Transmission Peaks;310 12.6.2;6.6.2 FabryPerot Interferometer as a Spectrometer;312 12.6.3;6.6.3 Free Spectral Range;315 12.6.4;6.6.4 Spectral Resolution;316 12.7;6.7 LummerGehrcke Plate;319 12.8;6.8 Thin Optical Coatings;320 12.8.1;6.8.1 Single Layer Optical Coatings;320 12.8.2;6.8.2 Multi-layer Optical Coatings;324 12.8.3;6.8.3 Anti-Reflection Coatings;331 12.8.4;6.8.4 High Reflectance Coatings;332 12.8.5;6.8.5 Narrow Band Interference Filters;333 12.9;6.9 References;334 12.10;6.10 Problems;335 13;Ch
apter 7 DIFFRACTION OF LIGHT;338 13.1;7.1 Introduction;338 13.2;7.2 Huygens Principle;339 13.3;7.3 HuygensFresnel Theory;340 13.4;7.4 Kirchhoff s Diffraction Theory;341 13.4.1;7.4.1 Kirchhoffs Boundary Conditions;344 13.4.2;7.4.2 FresnelKirchhoff Diffraction Formula;346 13.5;7.5 Regimes of Diffraction;352 13.6;7.6 Babinets Principle;354 13.7;7.7 References;356 13.8;7.8 Problems;357 14;Chapter 8 FRESNEL DIFFRACTION;358 14.1;8.1 Near-Field Diffraction;358 14.2;8.2 Rectangular Aperture;360 14.2.1;8.2.1 The Cornu Spiral;363 14.2.2;8.2.2 Narrow Slit;365 14.2.3;8.2.3 Straight Edge;372 14.2.4;8.2.4 Rectangular Obstacle;374 14.3;8.3 Circular Aperture;378 14.3.1;8.3.1 Irradiance at Off-Axial Points;383 14.3.2;8.3.2 The Arago Bright Spot;384 14.4;8.4 The Zone Plate;385 14.5;8.5 Pin-Hole Camera;388 14.6;8.6 References;389 14.7;8.7 Problems;389 15;Chapter 9 THE FOURIER TRANSFORM;392 15.1;9.1 Introduction;392 15.2;9.2 The Fourier Series;392 15.2.1;9.2.1 The Rectangle Wave;394 15.3;9.3 Fourier Transforms in One Dimension;398 15.3.1;9.3.1 Fourier Transforms of Simple Functions;401 15.4;9.4 Fourier Transforms in Two Dimensions;408 15.4.1;9.4.1 Properties of the Fourier Transforms;408 15.5;9.5 Convolution Operation;411 15.5.1;9.5.1 Convolution as the Area of Products;414 15.5.2;9.5.2 Convolution and Impulse Response;416 15.5.3;9.5.3 Convolution Theorems;418 15.6;9.6 Convolution of Discrete Functions;421 15.7;9.7 Correlation of Functions;422 15.7.1;9.7.1 Correlation Theorems;424 15.7.2;9.7.2 The WienerKhinchin Theorem;425 15.8;9.8 References;426 15.9;9.9 Problems;426 16;Chapter 10 FRAUNHOFER DIFFRACTION;430 16.1;10.1 Far-Field Diffraction;430 16.1.1;10.1.1 Fourier Decomposition of Aperture Function;432 16.1.2;10.1.2 Diffraction with a Lens;433 16.2;10.2 Diffracting Apertures;438 16.2.1;10.2.1 Rectangular Aperture;438 16.2.2;10.2.2 Infinitely Long Slit;441 16.2.3;10.2.3 Circular Aperture;443 16.3;10.3 Apodization;447 16.4;10.4 The Array Theorem;448 16.4.1;10.4.1 Two-Slit Aperture;450
16.4.2;10.4.2 Three-Slit Aperture;453 16.5;10.5 The Diffraction Grating;455 16.5.1;10.5.1 Grating Dispersion;459 16.5.2;10.5.2 Blazed Grating;459 16.5.3;10.5.3 Resolving Power of a Grating;465 16.5.4;10.5.4 Free Spectral Range;468 16.6;10.6 Irregularly Positioned Apertures;469 16.7;10.7 Sinusoidal Grating;470 16.8;10.8 Two Pin-Holes;471 16.9;10.9 References;473 16.10;10.10 Problems;473 17;Chapter 11 IMAGE FORMATION AND OPTICAL PROCESSING;478 17.1;11.1 Introduction;478 17.2;11.2 Diffraction Theory of Image Formation;480 17.2.1;11.2.1 Image Formation with one Lens;482 17.2.2;11.2.2 Image Formation with Two Lenses;490 17.3;11.3 Coherent Image Processing;492 17.3.1;11.3.1 Spatial Frequency Filtering;492 17.3.2;11.3.2 Filters for Imaging Phase Objects;497 17.3.3;11.3.3 Complex Filter;500 17.3.4;11.3.4 Matched Filter;506 17.4;11.4 Coherent Optical Processing;507 17.5;11.5 Incoherent Image Formation;508 17.6;11.6 Incoherent Optical Processing;509 17.7;11.7 Resolving Power of Image Forming Systems;512 17.7.1;11.7.1 Incoherent Object Illumination;512 17.7.2;11.7.2 Coherent Object Illumination;514 17.8;11.8 References;517 17.9;11.9 Problems;517 18;Chapter 12 TRANSFER FUNCTIONS;524 18.1;12.1 Introduction;524 18.2;12.2 Isoplanatism;525 18.3;12.3 Coherent Transfer Function;526 18.4;12.4 Optical Transfer Function;529 18.5;12.5 OTF of a Diffraction-limited Optical System;531 18.6;12.6 Transfer Functions of Aberrated Optical Systems;536 18.6.1;12.6.1 OTF of a Defocused Optical System;538 18.7;12.7 Imaging Sinusoidal Object Modulation;540 18.8;12.8 Measurement of OTF;543 18.9;12.9 References;544 18.10;12.10 Problems;544 19;Chapter 13 HOLOGRAPHY;548 19.1;13.1 Introduction;548 19.2;13.2 On-Axis Holography;550 19.2.1;13.2.1 Hologram Recording;550 19.2.2;13.2.2 Wavefront Reconstruction;553 19.3;13.3 Off-Axis Holography;557 19.4;13.4 Holography of 3D Objects;561 19.5;13.5 Magnification in Holographic Imaging;565 19.5.1;13.5.1 Lensless Fourier Transform Hologram;570 19.5.2;13.5.2 Resoluti
on of a Hologram;572 19.6;13.6 Reflection Hologram;573 19.7;13.7 Rainbow Holography;577 19.8;13.8 Holographic Interferometry;579 19.8.1;13.8.1 Double Exposure Holographic Interferometry;580 19.8.2;13.8.2 Real-Time Holographic Interferometry;582 19.8.3;13.8.3 Time-Average Holographic Interferometry;583 19.9;13.9 Holographic Optical Elements;585 19.10;13.10 References;586 19.11;13.11 Problems;586 20;Chapter 14 NONLINEAR OPTICS;590 20.1;14.1 Introduction;590 20.2;14.2 Nonlinear Polarization;592 20.2.1;14.2.1 Second-Order Nonlinear Polarization;594 20.2.2;14.2.2 Third-Order Nonlinear Polarization;601 20.2.3;14.2.3 Higher Order Nonlinear Polarizations;601 20.3;14.3 Symmetry Properties of the Susceptibility Tensors;604 20.3.1;14.3.1 Susceptibility Tensors for Negative Frequencies;604 20.3.2;14.3.2 Full Permutation Symmetry;605 20.3.3;14.3.3 Kleinmans Symmetry;607 20.4;14.4 Wave Equation for Nonlinear Media;609 20.5;14.5 Second-Order Nonlinear Processes;610 20.5.1;14.5.1 Sum-Frequency Generation;612 20.5.2;14.5.2 Upconversion;618 20.5.3;14.5.3 Second-Harmonic Generation;620 20.5.4;14.5.4 Parametric Amplification;625 20.6;14.6 Optical Phase Conjugation;628 20.7;14.7 Optical Kerr Effect and Self-Focusing;632 20.8;14.8 The Electrooptic Effect;634 20.9;14.9 Electrooptic Modulators;637 20.9.1;14.9.1 Electrooptic Intensity Modulator;640 20.9.2;14.9.2 Electrooptic Phase Modulator;642 20.10;14.10 References;643 20.11;14.11 Problems;643 21;Appendix-A;646 22;Appendix-B;648 23;Index;650