Nonlinear optics is the study of the interaction of intense laser light with matter. The third edition of this textbook has been rewritten to conform to the standard SI system of units and includes comprehensively updated material on the latest developments in the field.
The book presents an introduction to the entire field of optical physics and specifically the area of nonlinear optics, covering fundamental issues and applied aspects of this exciting area.
Nonlinear Optics will have lasting appeal to a wide audience of physics, optics, and electrical engineering students, as well as to working researchers and engineers. Those in related fields, such as materials science and chemistry, will also find this book of particular interest.
- Presents an introduction to the entire field of optical physics from the perspective of nonlinear optics
- Combines first-rate pedagogy with a treatment of fundamental aspects of nonlinear optics
- Covers all the latest topics and technology in this ever-evolving industry
- Strong emphasis on the fundamentals
Inhaltsverzeichnis
1;Front cover;1 2;Nonlinear Optics;4 3;Copyright page;5 4;Contents;8 5;Preface to the Third Edition;14 6;Preface to the Second Edition;16 7;Preface to the First Edition;18 8;Chapter 1. The Nonlinear Optical Susceptibility;22 8.1;1.1. Introduction to Nonlinear Optics;22 8.2;1.2. Descriptions of Nonlinear Optical Processes;25 8.3;1.3. Formal Definition of the Nonlinear Susceptibility;38 8.4;1.4. Nonlinear Susceptibility of a Classical Anharmonic Oscillator;42 8.5;1.5. Properties of the Nonlinear Susceptibility;54 8.6;1.6. Time-Domain Description of Optical Nonlinearities;73 8.7;1.7. Kramers-Kronig Relations in Linear and Nonlinear Optics;79 8.8;Problems;84 8.9;References;86 9;Chapter 2. Wave-Equation Description of Nonlinear Optical Interactions;90 9.1;2.1. The Wave Equation for Nonlinear Optical Media;90 9.2;2.2. The Coupled-Wave Equations for Sum-Frequency Generation;95 9.3;2.3. Phase Matching;100 9.4;2.4. Quasi-Phase-Matching;105 9.5;2.5. The Manley-Rowe Relations;109 9.6;2.6. Sum-Frequency Generation;112 9.7;2.7. Second-Harmonic Generation;117 9.8;2.8. Difference-Frequency Generation and Parametric Amplification;126 9.9;2.9. Optical Parametric Oscillators;129 9.10;2.10. Nonlinear Optical Interactions with Focused Gaussian Beams;137 9.11;2.11. Nonlinear Optics at an Interface;143 9.12;Problems;149 9.13;References;153 10;Chapter 3. Quantum-Mechanical Theory of the Nonlinear Optical Susceptibility;156 10.1;3.1. Introduction;156 10.2;3.2. Schrödinger Calculation of Nonlinear Optical Susceptibility;158 10.3;3.3. Density Matrix Formulation of Quantum Mechanics;171 10.4;3.4. Perturbation Solution of the Density Matrix Equation of Motion;179 10.5;3.5. Density Matrix Calculation of the Linear Susceptibility;182 10.6;3.6. Density Matrix Calculation of the Second-Order Susceptibility;191 10.7;3.7. Density Matrix Calculation of the Third-Order Susceptibility;201 10.8;3.8. Electromagnetically Induced Transparency;206 10.9;3.9. Local-Field Corrections to the Nonlinear Optical S
usceptibility;215 10.10;Problems;222 10.11;References;225 11;Chapter 4. The Intensity-Dependent Refractive Index;228 11.1;4.1. Descriptions of the Intensity-Dependent Refractive Index;228 11.2;4.2. Tensor Nature of the Third-Order Susceptibility;232 11.3;4.3. Nonresonant Electronic Nonlinearities;242 11.4;4.4. Nonlinearities Due to Molecular Orientation;249 11.5;4.5. Thermal Nonlinear Optical Effects;256 11.6;4.6. Semiconductor Nonlinearities;261 11.7;4.7. Concluding Remarks;268 11.8;References;272 12;Chapter 5. Molecular Origin of the Nonlinear Optical Response;274 12.1;5.1. Nonlinear Susceptibilities Calculated Using Time-Independent Perturbation Theory;274 12.2;5.2. Semiempirical Models of the Nonlinear Optical Susceptibility;280 12.3;Model of Boling, Glass, and Owyoung;281 12.4;5.3. Nonlinear Optical Properties of Conjugated Polymers;283 12.5;5.4. Bond-Charge Model of Nonlinear Optical Properties;285 12.6;5.5. Nonlinear Optics of Chiral Media;289 12.7;5.6. Nonlinear Optics of Liquid Crystals;292 12.8;Problems;294 12.9;References;295 13;Chapter 6. Nonlinear Optics in the Two-Level Approximation;298 13.1;6.1. Introduction;298 13.2;6.2. Density Matrix Equations of Motion for a Two-Level Atom;299 13.3;6.3. Steady-State Response of a Two-Level Atom to a Monochromatic Field;306 13.4;6.4. Optical Bloch Equations;314 13.5;6.5. Rabi Oscillations and Dressed Atomic States;322 13.6;6.6. Optical Wave Mixing in Two-Level Systems;334 13.7;Problems;347 13.8;References;348 14;Chapter 7. Processes Resulting from the Intensity-Dependent Refractive Index;350 14.1;7.1. Self-Focusing of Light and Other Self-Action Effects;350 14.2;7.2. Optical Phase Conjugation;363 14.3;7.3. Optical Bistability and Optical Switching;380 14.4;7.4. Two-Beam Coupling;390 14.5;7.5. Pulse Propagation and Temporal Solitons;396 14.6;Problems;404 14.7;References;409 15;Chapter 8. Spontaneous Light Scattering and Acoustooptics;412 15.1;8.1. Features of Spontaneous Light Scattering;412 15.2;8.2. Microscopic T
heory of Light Scattering;417 15.3;8.3 Thermodynamic Theory of Scalar Light Scattering;423 15.4;8.4. Acoustooptics;434 15.5;Problems;448 15.6;References;449 16;Chapter 9. Stimulated Brillouin and Stimulated Rayleigh Scattering;450 16.1;9.1. Stimulated Scattering Processes;450 16.2;9.2. Electrostriction;452 16.3;9.3. Stimulated Brillouin Scattering (Induced by Electrostriction);457 16.4;9.4. Phase Conjugation by Stimulated Brillouin Scattering;469 16.5;9.5. Stimulated Brillouin Scattering in Gases;474 16.6;9.6. Stimulated Brillouin and Stimulated Rayleigh Scattering;476 16.7;Problems;489 16.8;References;491 17;Chapter 10. Stimulated Raman Scattering and Stimulated Rayleigh-Wing Scattering;494 17.1;10.1. The Spontaneous Raman Effect;494 17.2;10.2. Spontaneous versus Stimulated Raman Scattering;495 17.3;10.3. Stimulated Raman Scattering Described by the Nonlinear Polarization;500 17.4;10.4. Stokes-Anti-Stokes Coupling in Stimulated Raman Scattering;509 17.5;10.5. Coherent Anti-Stokes Raman Scattering;520 17.6;10.6. Stimulated Rayleigh-Wing Scattering;522 17.7;Problems;529 17.8;References;529 18;Chapter 11. The Electrooptic and Photorefractive Effects;532 18.1;11.1. Introduction to the Electrooptic Effect;532 18.2;11.2. Linear Electrooptic Effect;533 18.3;11.3. Electrooptic Modulators;537 18.4;11.4. Introduction to the Photorefractive Effect;544 18.5;11.5 Photorefractive Equations of Kukhtarev et al.;547 18.6;11.6. Two-Beam Coupling in Photorefractive Materials;549 18.7;11.7. Four-Wave Mixing in Photorefractive Materials;557 18.8;Problems;561 18.9;References;561 19;Chapter 12. Optically Induced Damage and Multiphoton Absorption;564 19.1;12.1. Introduction to Optical Damage;564 19.2;12.2. Avalanche-Breakdown Model;565 19.3;12.3. Influence of Laser Pulse Duration;567 19.4;12.4. Direct Photoionization;569 19.5;12.5. Multiphoton Absorption and Multiphoton Ionization;570 19.6;Problems;580 19.7;References;580 20;Chapter 13. Ultrafast and Intense-Field Nonlinear Optics;582 20.
1;13.1. Introduction;582 20.2;13.2. Ultrashort Pulse Propagation Equation;582 20.3;13.3. Interpretation of the Ultrashort-Pulse Propagation Equation;588 20.4;13.4. Intense-Field Nonlinear Optics;592 20.5;13.5. Motion of a Free Electron in a Laser Field;593 20.6;13.6. High-Harmonic Generation;596 20.7;13.7. Nonlinear Optics of Plasmas and Relativistic Nonlinear Optics;600 20.8;13.8. Nonlinear Quantum Electrodynamics;604 20.9;Problem;607 20.10;References;607 21;Appendices;610 21.1;Appendix A. The SI System of Units;610 21.2;Further reading;617 21.3;Appendix B. The Gaussian System of Units;617 21.4;Further reading;621 21.5;Appendix C. Systems of Units in Nonlinear Optics;621 21.6;Appendix D. Relationship between Intensity and Field Strength;623 21.7;Appendix E. Physical Constants;624 22;Index;626