eBook.de : Ihr Online Shop für eBooks, Reader, Downloads und Bücher
Connect 01/2015 eBook-Shops: Testsieger im epub Angebot, Testurteil: gut Die Welt: Kundenorientierte Internetseiten Prädikat GOLD
+49 (0)40 4223 6096
PORTO-
FREI

Reelle Funktionen

2. Aufl. 1954. Paperback.
Sofort lieferbar
Buch (kartoniert)
Buch € 59,99* inkl. MwSt.
Portofrei*

Produktdetails

Titel: Reelle Funktionen
Autor/en: Georg Aumann

ISBN: 3642880665
EAN: 9783642880667
2. Aufl. 1954.
Paperback.
Springer Berlin Heidelberg

8. Mai 2012 - kartoniert - 428 Seiten

Die Entwicklung, in welcher sich die Theorie der reellen Funktionen seit einiger Zeit befindet, betrifft vor allem die allgemeinen Begriffe. Besonders die Idee der Ordnung mit allen ihren Spielarten, wie sie etwa in den Strukturen des Filters, des Verbandes, des Somenringes und der Ortsfunktionen geprägt worden ist, führte in steigendem Maße zu einer Umgestaltung aller Teile der Theorie. Diese Entwicklung kann noch nicht als abgeschlossen angesehen werden; trotzdem wurde versucht, sie in diesem Buch zu berücksichtigen, zu dem Ausmaß allerdings, wie es mir ursprünglich vorschwebte, ist es nicht gekommen. Verspätet erst wurde mir die einschlägige Literatur zugänglich, und außerdem ergab es sich, daß der klassische Tatsachenbestand, der trotz aller neuen Be­ griffsbildungen immer noch den eigentlichen Schatz der Theorie aus­ macht, letzthin nicht vernachlässigt werden durfte. Daß auf den fol­ genden 400 Seiten keine erschöpfende Behandlung des Gesamtgebietes möglich war, ist bei der Weite desselben nicht verwunderlich. So fehlt insbesondere eine eingehende Behandlung der Theorien der Differen­ tiation der additiven Mengenfunktionen, der Oberflächenintegrale, des DENJoyschen Integrals, der CARATHEODoRYschen Ortsfunktionen und der SCHWARTzschen Distributionen; das Literaturverzeichnis am Ende des Buches mag ein kleiner Lückenbüßer dafür sein. Wegen der hier behandelten Gegenstände selbst aber verweise ich auf den nachfolgenden "Überblick".
Vorbemerkung, Überblick und Zeichenerklärung.- 1. Mengen.- 1.1. Mengen und Teilmengen.- 1.2. Verknüpfungen von Mengen.- 1.3. Mengensysteme.- 1.4. Produktmenge, Abbildung.- 1.5. Abzählbare Mengen.- 1.6. Die Mächtigkeit des Kontinuums.- 2. Ordnungen.- 2.1. Teilweise geordnete Mengen.- 2.2. Vollständigkeit t-geordneter Mengen.- 2.3. Komposition t-geordneter Mengen.- 2.4. k-geordnete Mengen.- 2.5. Wohlgeordnete Mengen.- 2.6. Mengenvergleichung.- 2.7. Ordinalzahlen.- 2.8. Kardinalzahlen.- 2.9. Borelsche und Suslinsche Mengensysteme.- 2.10. Allgemeine Konvergenztheorie.- 3. Verbände.- 3.1. Der Verband.- 3.2. Distributive und komplementäre Verbände.- 3.3. Somenringe.- 3.4. Unteilbare Elemente.- 3.5. Isomorphiesatz.- 3.6. ?-Somenringe.- 4. Räume.- 4.1. Der metrische Raum.- 4.2. Offene Mengen.- 4.3. Abgeschlossene Mengen.- 4.4. Randmengen.- 4.5. Dichte Mengen.- 4.6. Umgebungssysteme.- 4.7. Kompaktheit.- 4.8. Mengenkonvergenz.- 4.9. Vollständige Räume.- 4.10. Die Baireschen und Suslinschen Mengen eines topologischen Raumes.- 5. Reelle Punktfunktionen.- 5.1. Funktionen auf abstrakten Mengen.- 5.2. Stetige Funktionen in topologischen Räumen.- 5.3. Nichtkonstante stetige Funktionen (Metrisation).- 5.4. Halbstetige Funktionen.- 5.5. Unstetige Funktionen.- 5.6. Die BAIRaschen Funktionen.- 5.7. Approximation stetiger Funktionen.- 5.8. Abbildungen und Gleichungen.- 5.9. Der allgemeine Zwischenwertsatz.- 6. Funktionen in Produkträumen Seite.- 6.1. Metrische Produkträume.- 6.2. Faktoriell stetige Funktionen.- 6.3. Faktoriell stetige Erweiterungen.- 7. Reelle Funktionen einer reellen Variablen.- 7.1. Ableitungen und Derivierte.- 7.2. Eindeutigkeitssatz der Differentialrechnung.- 7.3. Umkehrung der Differentiation.- 7.4. Das T-Integral und seine Erweiterungen.- 7.5. Der Fundamentalsatz der Differential- und Integralrechnung.- 7.6. Vergleich der Funktionenbereiche.- 8. Maßtheorie.- 8.0. Vorbetrachtung zur Maßtheorie.- 8.1. Additive Somenfunktionen.- 8.2. Intervallfunktionen.- 8.3. Die Methode der additiven Zerleger.- 8.4. Differenzdarstellung der additiven Funktionen.- 8.5. Totalisation.- 8.6. Konstruktion von Maßfunktionen.- 8.7. Vervollständigung eines Inhalts durch Einschließung.- 8.8. Maße und ihre Vervollständigung.- 8.9. Reduzierte Inhalte und Maße.- 8.10. Erweiterung eines Inhalts zu einem Maß.- 8.11. LESESGUasches Maß im Eq.- 9. Positive lineare Funktionale.- 9.1. Elementarintegral und Normintegral.- 9.2. Die N-integrierbaren Funktionen.- 9.3. Die N-meßbaren Funktionen.- 9.4. Beziehungen zur Maßtheorie.- 9.5. Die Funktionenräume Fp, Lp.- 9.6. Der Raum L2.- 9.7. Vergleich von Elementarintegralen.- 9.8. Iterierte Integrale.- Literatur.- Namen- und Sachverzeichnis.- Zeichenverzeichnis.
Kundenbewertungen zu Georg Aumann „Reelle Funktionen“
Noch keine Bewertungen vorhanden
Zur Rangliste der Rezensenten
Veröffentlichen Sie Ihre Kundenbewertung:
Kundenbewertung schreiben
Unsere Leistungen auf einen Klick
Unser Service für Sie
Zahlungsmethoden
Bequem, einfach und sicher mit eBook.de. mehr Infos akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal mehr Infos
Geprüfte Qualität
  • Schnelle Downloads
  • Datenschutz
  • Sichere Zahlung
  • SSL-Verschlüsselung
Servicehotline
+49 (0)40 4223 6096
Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 18.00 Uhr
Chat
Ihre E-Mail-Adresse eintragen und kostenlos informiert werden:
* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.
Bei als portofrei markierten Produkten bezieht sich dies nur auf den Versand innerhalb Deutschlands.

** Deutschsprachige eBooks und Bücher dürfen aufgrund der in Deutschland geltenden Buchpreisbindung und/oder Vorgaben von Verlagen nicht rabattiert werden. Soweit von uns deutschsprachige eBooks und Bücher günstiger angezeigt werden, wurde bei diesen kürzlich von den Verlagen der Preis gesenkt oder die Buchpreisbindung wurde für diese Titel inzwischen aufgehoben. Angaben zu Preisnachlässen beziehen sich auf den dargestellten Vergleichspreis.
eBook.de - Meine Bücher immer dabei
eBook.de ist eine Marke der Hugendubel Digital GmbH & Co. KG
Folgen Sie uns unter: