Introduces major catalytic processes including products from the petroleum, chemical, environmental and alternative energy industries
* Provides an easy to read description of the fundamentals of catalysis and some of the major catalytic industrial processes used today
* Offers a rationale for process designs based on kinetics and thermodynamics
* Alternative energy topics include the hydrogen economy, fuels cells, bio catalytic (enzymes) production of ethanol fuel from corn and biodiesel from vegetable oils
* Problem sets of included with answers available to faculty who use the book
Review:
"In less than 300 pages, it serves as an excellent introduction to these subjects whether for advanced students or those seeking to learn more about these subjects on their own time. . . Particularly useful are the succinct summaries throughout the book. . . excellent detail in the table of contents, a detailed index, key references at the end of each chapter, and challenging classroom questions. . ." (GlobalCatalysis. com, May 2016)
Inhaltsverzeichnis
Preface xv
Acknowledgments xvii
List of Figures xix
Nomenclature xxvii
Chapter 1 Catalyst Fundamentals of Industrial Catalysis 1
1. 1 Introduction 1
1. 2 Catalyzed versus Noncatalyzed Reactions 1
1. 2. 1 Example Reaction: Liquid-Phase Redox Reaction 2
1. 2. 2 Example Reaction: Gas-Phase Oxidation Reaction 4
1. 3 Physical Structure of a Heterogeneous Catalyst 6
1. 3. 1 Active Catalytic Species 7
1. 3. 2 Chemical and Textural Promoters 7
1. 3. 3 Carrier Materials 8
1. 3. 4 Structure of the Catalyst and Catalytic Reactor 8
1. 4 Adsorption and Kinetically Controlled Models for Heterogeneous Catalysis 10
1. 4. 1 Langmuir Isotherm 11
1. 4. 2 Reaction Kinetic Models 13
1. 4. 2. 1 Langmuir-Hinshelwood Kinetics for CO Oxidation on Pt 14
1. 4. 2. 2 Mars-van Krevelen Kinetic Mechanism 17
1. 4. 2. 3 Eley-Rideal (E-R) Kinetic Mechanism 18
1. 4. 2. 4 Kinetic versus Empirical Rate Models 18
1. 5 Supported Catalysts: Dispersed Model 19
1. 5. 1 Chemical and Physical Steps Occurring during Heterogeneous Catalysis 19
1. 5. 2 Reactant Concentration Gradients within the Catalyzed Material 22
1. 5. 3 The Rate-Limiting Step 22
1. 6 Selectivity 24
1. 6. 1 Examples of Selectivity Calculations for Reactions with Multiple Products 25
1. 6. 2 Carbon Balance 26
1. 6. 3 Experimental Methods for Measuring Carbon Balance 27
Questions 27
Bibliography 29
Chapter 2 The Preparation of Catalytic Materials 31
2. 1 Introduction 31
2. 2 Carrier Materials 32
2. 2. 1 Al2O3 32
2. 2. 2 SiO2 34
2. 2. 3 TiO2 34
2. 2. 4 Zeolites 35
2. 2. 5 Carbons 37
2. 3 Incorporating the Active Material into the Carrier 37
2. 3. 1 Impregnation 37
2. 3. 2 Incipient Wetness or Capillary Impregnation 38
2. 3. 3 Electrostatic Adsorption 38
2. 3. 4 Ion Exchange 38
2. 3. 5 Fixing the Catalytic Species 39
2. 3. 6 Drying and Calcination 39
2. 4 Forming the Final Shape of the Catalyst 40
2. 4. 1 Powders 40
2. 4. 1. 1 Milling and Sieving 41
2. 4. 1. 2 Spray Drying 42
2. 4. 2 Pellets, Pills, and Rings 43
2. 4. 3 Extrudates 43
2. 4. 4 Granules 44
2. 4. 5 Monoliths 44
2. 5 Catalyst Physical Structure and Its Relationship to Performance 45
2. 6 Nomenclature for Dispersed Catalysts 45
Questions 46
Bibliography 46
Chapter 3 Catalyst Characterization 48
3. 1 Introduction 48
3. 2 Physical Properties of Catalysts 49
3. 2. 1 Surface Area and Pore Size 49
3. 2. 1. 1 Nitrogen Porosimetry 49
3. 2. 1. 2 Pore Size by Mercury Intrusion 51
3. 2. 2 Particle Size Distribution of Particulate Catalyst 51
3. 2. 2. 1 Particle Size Distribution 51
3. 2. 2. 2 Mechanical Strength 53
3. 2. 3 Physical Properties of Environmental Washcoated Monolith Catalysts 54
3. 2. 3. 1 Washcoat Thickness 54
3. 2. 3. 2 Washcoat Adhesion 54
3. 3 Chemical and Physical Morphology Structures of Catalytic Materials 54
3. 3. 1 Elemental Analysis 54
3. 3. 2 Thermal Gravimetric Analysis and Differential Thermal Analysis 55
3. 3. 3 The Morphology of Catalytic Materials by Scanning Electron Microscopy 56
3. 3. 4 Structural Analysis by X-Ray Diffraction 57
3. 3. 5 Structure and Morphology of Al2O3 Carriers 58
3. 3. 6 Dispersion or Crystallite Size of Catalytic Species 58
3. 3. 6. 1 Chemisorption 58
3. 3. 6. 2 Transmission Electron Microscopy 61
3. 3. 7 X-Ray Diffraction 62
3. 3. 8 Surface Composition of Catalysts by X-Ray Photoelectron Spectroscopy 62
3. 3. 9 The Bonding Environment of Metal Oxides by Nuclear Magnetic Resonance 64
3. 4 Spectroscopy 65
Questions 66
Bibliography 67
Chapter 4 Reaction Rate in Catalytic Reactors 69
4. 1 Introduction 69
4. 2 Space Velocity, Space Time, and Residence Time 69
4. 3 Definition of Reaction Rate 71
4. 4 Rate of Surface Kinetics 72
4. 4. 1 Empirical Power Rate Expressions 72
4. 4. 2 Experimental Measurement of Empirical Kinetic Parameters 73
4. 4. 3 Accounting for Chemical Equilibrium in Empirical Rate Expression 77
4. 4. 4 Special Case for First-Order Isothermal Reaction 77
4. 5 Rate of Bulk Mass Transfer 78
4. 5. 1 Overview of Bulk Mass Transfer Rate 78
4. 5. 2 Origin of Bulk Mass Transfer Rate Expression 79
4. 6 Rate of Pore Diffusion 80
4. 6. 1 Overview of Pore Diffusion 80
4. 6. 2 Pore Diffusion Theory 81
4. 7 Apparent Activation Energy and the Rate-Limiting Process 82
4. 8 Reactor Bed Pressure Drop 83
4. 9 Summary 84
Questions 84
Bibliography 87
Chapter 5 Catalyst Deactivation 88
5. 1 Introduction 88
5. 2 Thermally Induced Deactivation 88
5. 2. 1 Sintering of the Catalytic Species 89
5. 2. 2 Sintering of Carrier 92
5. 2. 3 Catalytic Species-Carrier Interactions 95
5. 3 Poisoning 96
5. 3. 1 Selective Poisoning 96
5. 3. 2 Nonselective Poisoning or Masking 97
5. 4 Coke Formation and Catalyst Regeneration 99
Questions 101
Bibliography 103
Chapter 6 Generating Hydrogen and Synthesis Gas by Catalytic Hydrocarbon Steam Reforming 104
6. 1 Introduction 104
6. 1. 1 Why Steam Reforming with Hydrocarbons? 104
6. 2 Large-Scale Industrial Process for Hydrogen Generation 105
6. 2. 1 General Overview 105
6. 2. 2 Hydrodesulfurization 106
6. 2. 3 Hydrogen via Steam Reforming and Partial Oxidation 106
6. 2. 3. 1 Steam Reforming 106
6. 2. 3. 2 Deactivation of Steam Reforming Catalyst 110
6. 2. 3. 3 Pre-reforming 111
6. 2. 3. 4 Partial Oxidation and Autothermal Reforming 111
6. 2. 4 Water Gas Shift 112
6. 2. 4. 1 Deactivation of Water Gas Shift Catalyst 116
6. 2. 5 Safety Considerations During Catalyst Removal 116
6. 2. 6 Other CO Removal Methods 116
6. 2. 6. 1 Pressure Swing Absorption 116
6. 2. 6. 2 Methanation 117
6. 2. 6. 3 Preferential Oxidation of CO 117
6. 2. 7 Hydrogen Generation for Ammonia Synthesis 119
6. 2. 8 Hydrogen Generation for Methanol Synthesis 120
6. 2. 9 Synthesis Gas for Fischer-Tropsch Synthesis 120
6. 3 Hydrogen Generation for Fuel Cells 121
6. 3. 1 New Catalyst and Reactor Designs for the Hydrogen Economy 122
6. 3. 2 Steam Reforming 123
6. 3. 3 Water Gas Shift 124
6. 3. 4 Preferential Oxidation 125
6. 3. 5 Combustion 125
6. 3. 6 Autothermal Reforming for Complicated Fuels 126
6. 3. 7 Steam Reforming of Methanol: Portable Power Applications 126
6. 4 Summary 126
Questions 127
Bibliography 128
Chapter 7 Ammonia, Methanol, Fischer-Tropsch Production 129
7. 1 Ammonia Synthesis 129
7. 1. 1 Thermodynamics 129
7. 1. 2 Reaction Chemistry and Catalyst Design 130
7. 1. 3 Process Design 132
7. 1. 4 Catalyst Deactivation 134
7. 2 Methanol Synthesis 134
7. 2. 1 Process Design 136
7. 2. 1. 1 Quench Reactor 136
7. 2. 1. 2 Staged Cooling Reactor 137
7. 2. 1. 3 Tube-Cooled Reactor 137
7. 2. 1. 4 Shell-Cooled Reactor 138
7. 2. 2 Catalyst Deactivation 139
7. 3 Fischer-Tropsch Synthesis 140
7. 3. 1 Process Design 142
7. 3. 1. 1 Bubble/Slurry-Phase Process 142
7. 3. 1. 2 Packed Bed Process 143
7. 3. 1. 3 Slurry/Loop Reactor (Synthol Process) 143
7. 3. 2 Catalyst Deactivation 143
Questions 144
Bibliography 145
Chapter 8 Selective Oxidations 146
8. 1 Nitric Acid 146
8. 1. 1 Reaction Chemistry and Catalyst Design 146
8. 1. 1. 1 The Importance of Catalyst Selectivity 147
8. 1. 1. 2 The PtRh Alloy Catalyst 147
8. 1. 2 Nitric Acid Production Process 148
8. 1. 3 Catalyst Deactivation 150
8. 2 Hydrogen Cyanide 151
8. 2. 1 HCN Production Process 152
8. 2. 2 Deactivation 152
8. 3 The Claus Process: Oxidation of H2S 154
8. 3. 1 Clause Process Description 154
8. 3. 2 Catalyst Deactivation 155
8. 4 Sulfuric Acid 155
8. 4. 1 Sulfuric Acid Production Process 155
8. 4. 2 Catalyst Deactivation 158
8. 5 Ethylene Oxide 159
8. 5. 1 Catalyst 159
8. 5. 2 Catalyst Deactivation 160
8. 5. 3 Ethylene Oxide Production Process 160
8. 6 Formaldehyde 160
8. 6. 1 Low-Methanol Production Process 162
8. 6. 1. 1 Fe+Mo Catalyst 162
8. 6. 2 High-Methanol Production Process 163
8. 6. 2. 1 Ag Catalyst 164
8. 7 Acrylic Acid 164
8. 7. 1 Acrylic Acid Production Process 164
8. 7. 2 Acrylic Acid Catalyst 165
8. 7. 3 Catalyst Deactivation 166
8. 8 Maleic Anhydride 166
8. 8. 1 Catalyst Deactivation 166
8. 9 Acrylonitrile 166
8. 9. 1 Acrylonitrile Production Process 167
8. 9. 2 Catalyst 168
8. 9. 3 Deactivation 168
Questions 168
Bibliography 169
Chapter 9 Hydrogenation, Dehydrogenation, and Alkylation 171
9. 1 Introduction 171
9. 2 Hydrogenation 171
9. 2. 1 Hydrogenation in Stirred Tank Reactors 171
9. 2. 2 Kinetics of a Slurry-Phase Hydrogenation Reaction 174
9. 2. 3 Design Equation for the Continuous Stirred Tank Reactor 176
9. 3 Hydrogenation Reactions and Catalysts 177
9. 3. 1 Hydrogenation of Vegetable Oils for Edible Food Products 177
9. 3. 2 Hydrogenation of Functional Groups 180
9. 3. 3 Biomass (Corn Husks) to a Polymer 183
9. 3. 4 Comparing Base Metal and Precious Metal Catalysts 183
9. 4 Dehydrogenation 185
9. 5 Alkylation 187
Questions 188
Bibliography 189
Chapter 10 Petroleum Processing 190
10. 1 Crude Oil 190
10. 2 Distillation 191
10. 3 Hydrodemetalization and Hydrodesulfurization 193
10. 4 Hydrocarbon Cracking 197
10. 4. 1 Fluid Catalytic Cracking 197
10. 4. 2 Hydrocracking 200
10. 5 Naphtha Reforming 200
Questions 202
Bibliography 203
Chapter 11 Homogeneous Catalysis and Polymerization Catalysts 205
11. 1 Introduction to Homogeneous Catalysis 205
11. 2 Hydroformylation: Aldehydes from Olefins 206
11. 3 Carboxylation: Acetic Acid Production 208
11. 4 Enzymatic Catalysis 209
11. 5 Polyolefins 210
11. 5. 1 Polyethylene 210
11. 5. 2 Polypropylene 212
Questions 213
Bibliography 213
Chapter 12 Catalytic Treatment from Stationary Sources: Hc, Co, Nox, and O3 215
12. 1 Introduction 215
12. 2 Catalytic Incineration of Hydrocarbons and Carbon Monoxide 216
12. 2. 1 Monolith (Honeycomb) Reactors 218
12. 2. 2 Catalyzed Monolith (Honeycomb) Structures 219
12. 2. 3 Reactor Sizing 220
12. 2. 4 Catalyst Deactivation 222
12. 2. 5 Regeneration of Deactivated Catalysts 224
12. 3 Food Processing 225
12. 3. 1 Catalyst Deactivation 226
12. 4 Nitrogen Oxide (NOx) Reduction from Stationary Sources 226
12. 4. 1 SCR Technology 227
12. 4. 2 Ozone Abatement in Aircraft Cabin Air 229
12. 4. 3 Deactivation 229
12. 5 CO2 Reduction 230
Questions 231
Bibliography 233
Chapter 13 Catalytic Abatement of Gasoline Engine Emissions 235
13. 1 Emissions and Regulations 235
13. 1. 1 Origins of Emissions 235
13. 1. 2 Regulations in the United States 236
13. 1. 3 The Federal Test Procedure for the United States 238
13. 2 Catalytic Reactions Occurring During Catalytic Abatement 238
13. 3 First-Generation Converters: Oxidation Catalyst 239
13. 4 The Failure of Nonprecious Metals: A Summary of Catalyst History 240
13. 4. 1 Deactivation and Stabilization of Precious Metal Oxidation Catalysts 241
13. 5 Supporting the Catalyst in the Exhaust 242
13. 5. 1 Ceramic Monoliths 242
13. 5. 2 Metal Monoliths 245
13. 6 Preparing the Monolith Catalyst 246
13. 7 Rate Control Regimes in Automotive Catalysts 247
13. 8 Catalyzed Monolith Nomenclature 248
13. 9 Precious Metal Recovery from Catalytic Converters 248
13. 10 Monitoring Catalytic Activity in a Monolith 248
13. 11 The Failure of the Traditional Beaded (Particulate) Catalysts for Automotive Applications 250
13. 12 NOx, CO and HC Reduction: The Three-Way Catalyst 251
13. 13 Simulated Aging Methods 255
13. 14 Close-Coupled Catalyst 256
13. 15 Final Comments 258
Questions 259
Bibliography 261
Chapter 14 Diesel Engine Emission Abatement 262
14. 1 Introduction 262
14. 1. 1 Emissions from Diesel Engines 262
14. 1. 2 Analytical Procedures for Particulates 264
14. 2 Catalytic Technology for Reducing Emissions from Diesel Engines 265
14. 2. 1 Diesel Oxidation Catalyst 265
14. 2. 2 Diesel Soot Abatement 266
14. 2. 3 Controlling NOx in Diesel Engine Exhaust 267
Questions 272
Bibliography 273
Chapter 15 Alternative Energy Sources Using Catalysis: Bioethanol by Fermentation, Biodiesel by Transesterification, and H2-Based Fuel Cells 274
15. 1 Introduction: Sources of Non-Fossil Fuel Energy 274
15. 2 Sources of Non-Fossil Fuels 276
15. 2. 1 Biodiesel 276
15. 2. 1. 1 Production Process 276
15. 2. 2 Bioethanol 277
15. 2. 2. 1 Process for Bioethanol from Corn 278
15. 2. 3 Lignocellulose Biomass 278
15. 2. 4 New Sources of Natural Gas and Oil Sands 279
15. 3 Fuel Cells 279
15. 3. 1 Markets for Fuel Cells 281
15. 3. 1. 1 Transportation Applications 281
15. 3. 1. 2 Stationary Applications 282
15. 3. 1. 3 Portable Power Applications 282
15. 4 Types of Fuel Cells 283
15. 4. 1 Low-Temperature PEM Fuel Cell 284
15. 4. 1. 1 Electrochemical Reactions for H2-Fueled Systems 284
15. 4. 1. 2 Mechanistic Principles of the PEM Fuel Cell 286
15. 4. 1. 3 Membrane Electrode Assembly 287
15. 4. 2 Solid Polymer Membrane 288
15. 4. 3 PEM Fuel Cells Based on Direct Methanol 289
15. 4. 4 Alkaline Fuel Cell 290
15. 4. 5 Phosphoric Acid Fuel Cell 290
15. 4. 6 Molten Carbonate Fuel Cell 291
15. 4. 7 Solid Oxide Fuel Cell 293
15. 5 The Ideal Hydrogen Economy 293
Questions 294
Bibliography 295
Index 297