Comprehensive introduction to the fundamentals and state of the art research developments in electromagneto-mechanics of adaptive materials
* Covers a wide and varied range of subject areas (theoretical, experimental, computational studies and/or industrial applications) of electromagneto-mechanics from state-of-the-art fundamental research to applied research, and applications in emerging technologies
* Electromagneto-mechanics of material systems and structures has developed rapidly with extensive applications in electronics industry, nuclear engineering, smart materials and MEMS
* Written by one of the world's leading experts in this field
Inhaltsverzeichnis
About the Author ix Preface xi
Acknowledgments xiii
1 Introduction 1
References 2
2 Conducting Material Systems and Structures 5
2. 1 Basic Equations of Dynamic Magnetoelasticity 5
2. 2 Magnetoelastic Plate Vibrations and Waves 7
2. 2. 1 Classical Plate Bending Theory 9
2. 2. 2 Mindlin's Theory of Plate Bending 13
2. 2. 3 Classical Plate Bending Solutions 16
2. 2. 4 Mindlin Plate Bending Solutions 23
2. 2. 5 Plane Strain Plate Solutions 26
2. 3 Dynamic Magnetoelastic Crack Mechanics 32
2. 4 Cracked Materials Under Electromagnetic Force 40
2. 5 Summary 45
References 45
3 Dielectric/Ferroelectric Material Systems and Structures 47
Part 3. 1 Dielectrics 47
3. 1 Basic Equations of Electroelasticity 48
3. 2 Static Electroelastic Crack Mechanics 49
3. 2. 1 Infinite Dielectric Materials 49
3. 2. 2 Dielectric Strip 57
3. 3 Electroelastic Vibrations and Waves 60
3. 4 Dynamic Electroelastic Crack Mechanics 68
3. 5 Summary 72
Part 3. 2 Piezoelectricity 72
3. 6 Piezomechanics and Basic Equations 73
3. 6. 1 Linear Theory 73
3. 6. 2 Model of Polarization Switching 77
3. 6. 3 Model of Domain Wall Motion 80
3. 6. 4 Classical Lamination Theory 82
3. 7 Bending of Piezoelectric Laminates 90
3. 7. 1 Bimorphs 90
3. 7. 2 Functionally Graded Bimorphs 100
3. 7. 3 Laminated Plates 111
3. 8 Electromechanical Field Concentrations 113
3. 8. 1 Laminates 113
3. 8. 2 Disk Composites 123
3. 8. 3 Fiber Composites 126
3. 8. 4 MEMS Mirrors 136
3. 9 Cryogenic and High-Temperature Electromechanical Responses 140
3. 9. 1 Cryogenic Electromechanical Response 140
3. 9. 2 High-Temperature Electromechanical Response 147
3. 10 Electric Fracture and Fatigue 149
3. 10. 1 Fracture Mechanics Parameters 150
3. 10. 2 Cracked Rectangular Piezoelectric Material 173
3. 10. 3 Indentation Fracture Test 185
3. 10. 4 Modified Small Punch Test 189
3. 10. 5 Single-Edge Precracked Beam Test 193
3. 10. 6 Double Torsion Test 201
3. 10. 7 Fatigue of SEPB Specimens 203
3. 11 Summary 212
References 213
4 Ferromagnetic Material Systems and Structures 219
Part 4. 1 Ferromagnetics 219
4. 1 Basic Equations of Magnetoelasticity 220
4. 1. 1 Soft Ferromagnetic Materials 220
4. 1. 2 Magnetically Saturated Materials 221
4. 1. 3 Electromagnetic Materials 222
4. 2 Magnetoelastic Instability 224
4. 2. 1 Buckling of Soft Ferromagnetic Material 225
4. 2. 2 Buckling of Magnetically Saturated Material 228
4. 2. 3 Bending of Soft Ferromagnetic Material 231
4. 3 Magnetoelastic Vibrations and Waves 233
4. 3. 1 Vibrations and Waves of Soft Ferromagnetic Material 233
4. 3. 2 Vibrations and Waves of Magnetically Saturated Material 243
4. 4 Magnetic Moment Intensity Factor 250
4. 4. 1 Simply Supported Plate Under Static Bending 251
4. 4. 2 Fixed-End Plate Under Static Bending 252
4. 4. 3 Infinite Plate Under Dynamic Bending 255
4. 5 Tensile Fracture and Fatigue 256
4. 5. 1 Cracked Rectangular Soft Ferromagnetic Material 257
4. 5. 2 Fracture Test 261
4. 5. 3 Fatigue Crack Growth Test 263
4. 6 Summary 265
Part 4. 2 Magnetostriction 265
4. 7 Basic Equations of Magnetostriction 265
4. 8 Nonlinear Magneto-Mechanical Response 267
4. 8. 1 Terfenol-D/Metal Laminates 267
4. 8. 2 Terfenol-D/PZT Laminates 270
4. 9 Magnetoelectric Response 272
4. 10 Summary 273
References 273
Index 277