15% Rabatt1 auf fremdsprachige eBooks mit Gutscheincode BOOK15
Jetzt sparen
mehr erfahren
Produktbild: Probabilistic Graphical Models | Daphne Koller, Nir Friedman
Produktbild: Probabilistic Graphical Models | Daphne Koller, Nir Friedman

Probabilistic Graphical Models

Principles and Techniques

(0 Bewertungen)15
eBook epub
Sparen Sie jetzt zusätzlich 15% auf diesen Artikel mit Gutscheincode BOOK151
132,99 €inkl. Mwst.
Sofort lieferbar (Download)
Empfehlen
A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions.

Most tasks require a person or an automated system to reason to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.

Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Produktdetails

Erscheinungsdatum
31. Juli 2009
Sprache
englisch
Seitenanzahl
1270
Dateigröße
17,09 MB
Reihe
Adaptive Computation and Machine Learning series
Autor/Autorin
Daphne Koller, Nir Friedman
Verlag/Hersteller
Kopierschutz
mit Adobe-DRM-Kopierschutz
Family Sharing
Ja
Produktart
EBOOK
Dateiformat
EPUB
ISBN
9780262258357

Portrait

Daphne Koller

Daphne Koller is Professor in the Department of Computer Science at Stanford University.

Nir Friedman is Professor in the Department of Computer Science and Engineering at Hebrew University.

Bewertungen

0 Bewertungen

Es wurden noch keine Bewertungen abgegeben. Schreiben Sie die erste Bewertung zu "Probabilistic Graphical Models" und helfen Sie damit anderen bei der Kaufentscheidung.

Daphne Koller, Nir Friedman: Probabilistic Graphical Models bei ebook.de