
Inhaltsverzeichnis
1 Introductory Material. - 2 Fourier Transforms, Tempered Distributions, Approximate Identities. - 3 Singular Integrals. - 4 Vector-Valued Singular Integrals and Littlewood Paley Theory. - 5 Fractional Integrability or Differentiability and Multiplier Theorems. - 6 Bounded Mean Oscillation. - 7 Hardy Spaces. - 8 Weighted Inequalities. - Historical Notes. - Appendix A Orthogonal Matrices. - Appendix B Subharmonic Functions. - Appendix C Poisson Kernel on the Unit Strip. - Appendix D Density for Subadditive Operators. - Appendix E Transposes and Adjoints of Linear Operators. - Appendix F Faa di Bruno Formula. - Appendix G Besicovitch Covering Lemma. - Glossary. - References. - Index.
This book provides an introduction to Fourier analysis on Euclidean spaces intended for students who have completed first-year graduate courses in real and complex analysis. The text is self-contained and complete with numerous exercises in each section and seven appendices. (Cody B. Stockdale, Mathematical Reviews, May, 2025)
The well-written monograph is intended to serve the purposes of a two-semester course. . . . this textbook is very useful for graduate students in mathematics and a convenient reference for researchers working on multi-dimensional Fourier analysis. (Manfred Tasche, zbMATH 1551. 42001, 2025)
Es wurden noch keine Bewertungen abgegeben. Schreiben Sie die erste Bewertung zu "Fundamentals of Fourier Analysis" und helfen Sie damit anderen bei der Kaufentscheidung.