eBook.de : Ihr Online Shop für eBooks, Reader, Downloads und Bücher
+49 (0)40 4223 6096
Klick ins Buch 3 Geometric Properties of Banach Spaces and Nonlinear Iterations als Buch (kartoniert)
PORTO-
FREI

Geometric Properties of Banach Spaces and Nonlinear Iterations

Lieferbar innerhalb von drei Wochen
Buch (kartoniert)
Buch (kartoniert) € 69,49* inkl. MwSt.
Portofrei*
Dieser Artikel ist auch verfügbar als:

Produktdetails

Titel: Geometric Properties of Banach Spaces and Nonlinear Iterations
Autor/en: Charles Chidume

ISBN: 1848821891
EAN: 9781848821897
Auflage 2009.
Paperback.
Sprache: Englisch.
Springer London

27. März 2009 - kartoniert - 352 Seiten

  • Empfehlen
The contents of this monograph fall within the general area of nonlinear functional analysis and applications. We focus on an important topic within this area: geometric properties of Banach spaces and nonlinear iterations, a topic of intensive research e?orts, especially within the past 30 years, or so. In this theory, some geometric properties of Banach spaces play a crucial role. In the ?rst part of the monograph, we expose these geometric properties most of which are well known. As is well known, among all in?nite dim- sional Banach spaces, Hilbert spaces have the nicest geometric properties. The availability of the inner product, the fact that the proximity map or nearest point map of a real Hilbert space H onto a closed convex subset K of H is Lipschitzian with constant 1, and the following two identities 2 2 2 ||x+y|| =||x|| +2 x,y +||y|| , (?) 2 2 2 2 ||?x+(1??)y|| = ?||x|| +(1??)||y|| ??(1??)||x?y|| , (??) which hold for all x,y? H, are some of the geometric properties that char- terize inner product spaces and also make certain problems posed in Hilbert spaces more manageable than those in general Banach spaces. However, as has been rightly observed by M. Hazewinkel, "... many, and probably most, mathematical objects and models do not naturally live in Hilbert spaces". Consequently,toextendsomeoftheHilbertspacetechniquestomoregeneral Banach spaces, analogues of the identities (?) and (??) have to be developed.
1 Geometric properties. -1.1 Introduction. -1.2 Uniformly convex spaces. -1.3 Strictly convex Banach spaces. -1.4 The modulus of convexity. -1.5 Uniform convexity, strict convexity and reflexivity. -1.6 Historical remarks. -2 Smooth Spaces. -2.1 Introduction. -2.2 The modulus of smoothness. -2.3 Duality between spaces. -2.4 Historical remarks. -3 Duality Maps in Banach Spaces. -3.1 Motivation. -3.2 Duality maps of some concrete spaces. -3.3 Historical remarks. -4 Inequalities in Uniformly Convex Spaces. -4.1 Introduction. -4.2 Basic notions of convex analysis. -4.3 p-uniformly convex spaces. -4.4 Uniformly convex spaces. -4.5 Historical remarks. -5 Inequalities in Uniformly Smooth Spaces. -5.1 Definitions and basic theorems. -5.2 q-uniformly smooth spaces. -5.3 Uniformly smooth spaces. -5.4 Characterization of some real Banach spaces by the duality map. -5.4.1 Duality maps on uniformly smooth spaces. -5.4.2 Duality maps on spaces with uniformly Gateaux differentiable norms. -6 Iterative Method for Fixed Points of Nonexpansive Mappings. -6.1 Introduction. -6.2 Asymptotic regularity. -6.3 Uniform asymptotic regularity. -6.4 Strong convergence. -6.5 Weak convergence. -6.6 Some examples. -6.7 Halpern-type iteration method. -6.7.1 Convergence theorems. -6.7.2 The case of non-self mappings. -6.8 Historical remarks. -7 Hybrid Steepest Descent Method for Variational Inequalities. -7.1 Introduction. -7.2 Preliminaries. -7.3 Convergence Theorems. -7.4 Further Convergence Theorems. -7.4.1 Convergence Theorems. -7.5 The case of Lp spaces, 1 < p < 2. -7.6 Historical remarks. 8 Iterative Methods for Zeros of F -Accretive-Type Operators. -8.1 Introduction and preliminaries. -8.2 Some remarks on accretive operators. -8.3 Lipschitz strongly accretive maps. -8.4 Generalized F -accretive self-maps. -8.5 Generalized F -accretive non-self maps. -8.6 Historical remarks. -9 Iteration Processes for Zeros of Generalized F -Accretive Mappings. -9.1 Introduction. -9.2Uniformly continuous generalized F -hemi-contractive maps. -9.3 Generalized Lipschitz, generalized F -quasi-accretive mappings. -9.4 Historical remarks. -10 An Example; Mann Iteration for Strictly Pseudo-contractive Mappings. -10.1 Introduction and a convergence theorem. -10.2 An example. -10.3 Mann iteration for a class of Lipschitz pseudo-contractive maps. -10.4 Historical remarks. -11 Approximation of Fixed Points of Lipschitz Pseudo-contractive Mappings. -11.1 Lipschitz pseudo-contractions. -11.2 Remarks. -12 Generalized Lipschitz Accretive and Pseudo-contractive Mappings. -12.1 Introduction. -12.2 Convergence theorems. -12.3 Some applications. -12.4 Historical remarks. -13 Applications to Hammerstein Integral Equations. -13.1 Introduction. -13.2 Solution of Hammerstein equations. -13.2.1 Convergence theorems for Lipschitz maps. -13.2.2 Convergence theorems for bounded maps. -13.2.3 Explicit algorithms. -13.3 Convergence theorems with explicit algorithms. -13.3.1 Some useful lemmas. -13.3.2 Convergence theorems with coupled schemes for the case of Lipschitz maps. -13.3.3 Convergence in Lp spaces, 1 < p < 2: . -13.4 Coupled scheme for the case of bounded operators. -13.4.1 Convergence theorems. -13.4.2 Convergence for bounded operators in Lp spaces, 1 < p < 2:. -13.4.3 Convergence theorems for generalized Lipschitz maps. -13.5 Remarks and open questions. -13.6 Exercise. -13.7 Historical remarks. -14 Iterative Methods for Some Generalizations of Nonexpansive Maps. -14.1 Introduction. -14.2 Iteration methods for asymptotically nonexpansive mappings. -14.2.1 Modified Mann process. -14.2.2 Iteration method of Schu. -14.2.3 Halpern-type process. -14.3 Asymptotically quasi-nonexpansive mappings. -14.4 Historical remarks. -14.5 Exercises. -15 Common Fixed Points for Finite Families of Nonexpansive Mappings. -15.1 Introduction. -15.2 Convergence theorems for a family of nonexpansive mappings. -15.3 Non-self mappings. -16 Common Fixed Po
From the reviews:
"The aim of the present book is to give an introduction to this very active area of investigation. ... the book is of great help for graduate and postgraduate students, as well as for researchers interested in fixed point theory, geometry of Banach spaces and numerical solution of various kinds of equations - operator differential equations, differential inclusions, variational inequalities." (S. Cobzas, Studia Universitatis Babes-Bolyai. Mathematica, Vol. LIV (4), December, 2009)
"The topic of this monograph falls within the area of nonlinear functional analysis. ... The main purpose of this book is to expose in depth the most important results on iterative algorithms for approximation of fixed points or zeroes of the mappings mentioned above. ... this book picks up the most important results in the area, its explanations are comprehensive and interesting and I think that this book will be useful for mathematicians interested in iterations for nonlinear operators defined in Banach spaces." (Jesus Garcia-Falset, Mathematical Reviews, Issue 2010 f)
Kundenbewertungen zu Charles Chidume „Geometric Properties of Banach Spaces and Nonlinear Iterati…
Noch keine Bewertungen vorhanden
Zur Rangliste der Rezensenten
Veröffentlichen Sie Ihre Kundenbewertung:
Kundenbewertung schreiben
Unsere Leistungen auf einen Klick
Unser Service für Sie
Zahlungsmethoden
Bequem, einfach und sicher mit eBook.de. mehr Infos akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal mehr Infos
Geprüfte Qualität
  • Schnelle Downloads
  • Datenschutz
  • Sichere Zahlung
  • SSL-Verschlüsselung
Servicehotline
+49 (0)40 4223 6096
Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 18.00 Uhr
Chat
Ihre E-Mail-Adresse eintragen und kostenlos informiert werden:
2 Diese Artikel unterliegen nicht der Preisbindung, die Preisbindung dieser Artikel wurde aufgehoben oder der Preis wurde vom Verlag gesenkt. Die jeweils zutreffende Alternative wird Ihnen auf der Artikelseite dargestellt. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

3 Durch Öffnen der Leseprobe willigen Sie ein, dass Daten an den Anbieter der Leseprobe übermittelt werden.

4 Der gebundene Preis dieses Artikels wird nach Ablauf des auf der Artikelseite dargestellten Datums vom Verlag angehoben.

5 Der Preisvergleich bezieht sich auf die unverbindliche Preisempfehlung (UVP) des Herstellers.

6 Der gebundene Preis dieses Artikels wurde vom Verlag gesenkt. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

7 Die Preisbindung dieses Artikels wurde aufgehoben. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier

eBook.de - Meine Bücher immer dabei
eBook.de ist eine Marke der Hugendubel Digital GmbH & Co. KG
Folgen Sie uns unter: