eBook.de : Ihr Online Shop für eBooks, Reader, Downloads und Bücher
Connect 01/2015 eBook-Shops: Testsieger im epub Angebot, Testurteil: gut Die Welt: Kundenorientierte Internetseiten Prädikat GOLD
+49 (0)40 4223 6096
50% und mehr sparen mit den eBook Schnäppchen der Woche² >>
PORTO-
FREI

Classical Potential Theory

Lieferbar innerhalb von 3 bis 5 Werktagen
Buch (gebunden)
Buch (gebunden) € 117,49* inkl. MwSt.
Portofrei*
Dieser Artikel ist auch verfügbar als:

Produktdetails

Titel: Classical Potential Theory
Autor/en: David H. Armitage, Stephen J. Gardiner

ISBN: 1852336188
EAN: 9781852336189
Auflage 2001.
HC runder Rücken kaschiert.
Sprache: Englisch.
Springer London

27. Oktober 2000 - gebunden - 356 Seiten

A long-awaited, updated introductory text by the world leaders in potential theory. This essential reference work covers all aspects of this major field of mathematical research, from basic theory and exercises to more advanced topological ideas. The largely self-contained presentation makes it basically accessible to graduate students.
1. Harmonic Functions.- 1.1. Laplace's equation.- 1.2. The mean value property.- 1.3. The Poisson integral for a ball.- 1.4. Harnack's inequalities.- 1.5. Families of harmonic functions: convergence properties.- 1.6. The Kelvin transform.- 1.7. Harmonic functions on half-spaces.- 1.8. Real-analyticity of harmonic functions.- 1.9. Exercises.- 2. Harmonic Polynomials.- 2.1. Spaces of homogeneous polynomials.- 2.2. Another inner product on a space of polynomials.- 2.3. Axially symmetric harmonic polynomials.- 2.4. Polynomial expansions of harmonic functions.- 2.5. Laurent expansions of harmonic functions.- 2.6. Harmonic approximation.- 2.7. Harmonic polynomials and classical polynomials.- 2.8. Exercises.- 3. Subharmonic Functions.- 3.1. Elementary properties.- 3.2. Criteria for subharmonicity.- 3.3. Approximation of subharmonic functions by smooth ones.- 3.4. Convexity and subharmonicity.- 3.5. Mean values and subharmonicity.- 3.6. Harmonic majorants.- 3.7. Families of subharmonic functions: convergence properties.- 3.8. Exercises.- 4. Potentials.- 4.1. Green functions.- 4.2. Potentials.- 4.3. The distributional Laplacian.- 4.4. The Riesz decomposition.- 4.5. Continuity and smoothness properties.- 4.6. Classical boundary limit theorems.- 4.7. Exercises.- 5. Polar Sets and Capacity.- 5.1. Polar sets.- 5.2. Removable singularity theorems.- 5.3. Reduced functions.- 5.4. The capacity of a compact set.- 5.5. Inner and outer capacity.- 5.6. Capacitable sets.- 5.7. The fundamental convergence theorem.- 5.8. Logarithmic capacity.- 5.9. Hausdorff measure and capacity.- 5.10. Exercises.- 6. The Dirichlet Problem.- 6.1. Introduction.- 6.2. Upper and lower PWB solutions.- 6.3. Further properties of PWB solutions.- 6.4. Harmonic measure.- 6.5. Negligible sets.- 6.6. Boundary behaviour.- 6.7. Behaviour near infinity.- 6.8. Regularity and the Green function.- 6.9. PWB solutions and reduced functions.- 6.10. Superharmonic extension.- 6.11. Exercises.- 7. The Fine Topology.- 7.1. Introduction.- 7.2. Thin sets.- 7.3. Thin sets and reduced functions.- 7.4. Fine limits.- 7.5. Thin set s and the Dirichlet problem.- 7.6. Thinness at infinity.- 7.7. Wiener' s criterion.- 7.8. Limit properties of superharmonic functions.- 7.9. Harmonic approximation.- 8. The Martin Boundary.- 8.1. The Martin kernel and Mart in boundary.- 8.2. Reduced functions and minimal harmonic functions.- 8.3. Reduction ?0s and ?1.- 8.4. The Martin representation.- 8.5. The Martin boundary of a strip.- 8.6. The Martin kernel and the Kelvin transform.- 8.7. The boundary Harnack principle for Lipschitz domains.- 8.8. The Marti n boundary of a Lipschitz domain.- 9. Boundary Limits.- 9.1. Swept measures and the Dirichlet problem for the Martin compactification.- 9.2. Minimal thinness.- 9.3. Minimal fine limits.- 9.4. The Fatou-Naïm-Doob theorem.- 9.5. Minimal thinness in subdomains.- 9.6. Refinements of limit theorems.- 9.7. Minimal thinness in a half-space.- Historical Notes.- References.- Symbol Index.
Kundenbewertungen zu David H. Armitage, … „Classical Potential Theory“
Noch keine Bewertungen vorhanden
Zur Rangliste der Rezensenten
Veröffentlichen Sie Ihre Kundenbewertung:
Kundenbewertung schreiben
Unsere Leistungen auf einen Klick
Unser Service für Sie
Zahlungsmethoden
Bequem, einfach und sicher mit eBook.de. mehr Infos akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal mehr Infos
Geprüfte Qualität
  • Schnelle Downloads
  • Datenschutz
  • Sichere Zahlung
  • SSL-Verschlüsselung
Servicehotline
+49 (0)40 4223 6096
Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 18.00 Uhr
Chat
Ihre E-Mail-Adresse eintragen und kostenlos informiert werden:
2 Diese Artikel unterliegen nicht der Preisbindung, die Preisbindung dieser Artikel wurde aufgehoben oder der Preis wurde vom Verlag gesenkt. Die jeweils zutreffende Alternative wird Ihnen auf der Artikelseite dargestellt. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

4 Der gebundene Preis dieses Artikels wird nach Ablauf des auf der Artikelseite dargestellten Datums vom Verlag angehoben.

5 Der Preisvergleich bezieht sich auf die unverbindliche Preisempfehlung (UVP) des Herstellers.

6 Der gebundene Preis dieses Artikels wurde vom Verlag gesenkt. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

7 Die Preisbindung dieses Artikels wurde aufgehoben. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.

eBook.de - Meine Bücher immer dabei
eBook.de ist eine Marke der Hugendubel Digital GmbH & Co. KG
Folgen Sie uns unter: