eBook.de : Ihr Online Shop für eBooks, Reader, Downloads und Bücher
Connect 01/2015 eBook-Shops: Testsieger im epub Angebot, Testurteil: gut Die Welt: Kundenorientierte Internetseiten Prädikat GOLD
+49 (0)40 4223 6096
€ 0,00
Zur Kasse
PORTO-
FREI

Tabellen zur Fourier Transformation

'Grundlehren der mathematischen Wissenschaften'. Softcove…
Lieferbar innerhalb von 2 bis 3 Werktagen
Buch (kartoniert)
Buch € 54,99* inkl. MwSt.
Portofrei*

Produktdetails

Titel: Tabellen zur Fourier Transformation
Autor/en: Fritz Oberhettinger

ISBN: 3642947018
EAN: 9783642947018
'Grundlehren der mathematischen Wissenschaften'.
Softcover reprint of the original 1st ed. 1957.
Paperback.
Springer Berlin Heidelberg

14. Februar 2012 - kartoniert - 228 Seiten

Die nachfolgenden Tabellen stellen eine Sammlung von Integralen der folgenden Form dar. 00 (1 ) g(y) = f I(x) cos(xy)dx (Erstes Kapitel) 0 00 (2) g (y) = f I (x) sin (x y) d x (Zweites Kapitel) 0 00 ixy g(y) = Jt(x) e dx (Drittes Kapitel). (3 ) -00 Die Funktion g(y) in (1), (2) und (3) wird der Reihe nach als FOURIER Kosinus-, FOURIER-Sinus-, und exponentielle FOURIER-Transformation der Funktion I (x) bezeichnet. Unter gewissen Bedingungen [s. z. B. eines der im Literaturverzeichnis unter a) aufgefiihrten WerkeJ gelten die (1), (2) und (3) entsprechenden Umkehrformeln 00 (1 a) I(x) = ~ . f g(y) cos(xy) dy o 00 (2a) I(x) = ~ J g(y) sin(xy) dy o 00 I(x) = . LJg(y) e-ixYdy. 2n -00 Offensichtlich geht das Formelpaar (3), (3a) in (1), (1 a) oder (2), (2a) iiber, je nachdem I(x) gerade oder ungerade ist. In den Tabellen sind Parameter die durch lateinische Buchstaben bezeichnet sind, wenn nicht anders vermerkt, als positiv und reell vorausgesetzt, wobei fUr die Beispiele im dritten Kapitel der Parameter yauch negative Werte annimmt. In den meisten Fallen ist der Giiltigkeitsbereich eines Formel paares fUr komplexe Werte dieser GraBen sofort ersichtlich. Griechische Buchstaben bedeuten komplexe Parameter innerhalb des angegebenen Giiltigkeitsbereiches. In einigen Fallen ist die Funktion g (y) nur iiber einen Teilbereich von y angegeben. Dies bedeutet, daB sich g (y) fUr den restlichen Bereich nicht in einfacher Form angeben liiBt.
Erstes Kapitel: Fourier-Kosinus-Transformationen.-
1. Algebraische Funktionen.-
2. Beliebige Potenzen.-
3. Exponentialfunktionen.-
4. Logarithmische Funktionen.-
5. Trigonometrische Funktionen.-
6. Zyklometrische Funktionen.-
7. Hyperbolische Funktionen.-
8. Orthogonale Polynome.-
9. Gamma- und Riemann-Zetafunktion.-
10. Fehlerintegral.-
11. Exponentialintegral.-
12. Integralsinus und Integralkosinus.-
13. Fresnel-Integrale.-
14. Legendre-Funktionen.-
15. Bessel-Funktionen vom Argument x.-
16. Bessel-Funktionen vom Argument x2 und 1/x.-
17. Bessel-Funktionen vom Argument (ax2+bx+ c) .-
18. Bessel-Funktionen mit trigonometrischem und hyperbolischem Argument.-
19. Bessel-Funktionen mit variabler Ordnung.-
20. Modifizierte Bessel-Funktionen vom Argument x.-
21. Modifizierte Bessel-Funktionen vom Argument x2 und 1/x.-
22. Modifizierte Bessel-Funktionen vom Argument (ax2+bx + c) .-
23. Modifizierte Bessel-Funktionen mit trigonometrischem und hyperbolischem Argument.-
24. Modifizierte Bessel-Funktionen mit variabler Ordnung.-
25. Lommel-Funktionen.-
26. Anger-und Weber-Funktionen.-
27. Struve-Funktionen.-
28. Elliptische Integrale.-
29. Parabolische Zylinderfunktionen.-
30. Whittaker-Funktionen.-
31. Thetafunktionen.- Zweites Kapitel: Fourier-Sinus-Transformationen.-
1. Algebraische Funktionen.-
2. Beliebige Potenzen.-
3. Exponentialfunktionen.-
4. Logarithmische Funktionen.-
5. Trigonometrische Funktionen.-
6. Zyklometrische Funktionen.-
7. Hyperbolische Funktionen.-
8. Orthogonale Polynome.-
9. Gammafunktion.-
10. Fehlerintegral.-
11. Exponentialintegral.-
12. Integralsinus und Integralkosinus.-
13. Fresnel-Integrale.-
14. Legendre-Funktionen.-
15. Bessel-Funktionen vom Argument x.-
16. Bessel-Funktionen vom Argument x2 und 1/x.-
17. Bessel-Funktionen vom Argument (ax2+ bx+ c) .-
18. Bessel-Funktionen mit trigonometrischem und hyperbolischem Argument.-
19. Bessel-Funktionen mit variabler Ordnung.-
20. Modifizierte Bessel-Funktionen vom Argument x.-
21. Modifizierte Bessel-Funktionen vom Argument x2 und 1/x.-
22. Modifizierte Bessel-Funktionen vom Argument (ax2 + bx + c) .-
23. Modifizierte Bessel-Funktionen mit trigonometrischem und hyperbolischem Argument.-
24. Modifizierte Bessel-Funktionen mit variabler Ordnung.-
25. Lommel-Funktionen.-
26. Anger- und Weber-Funktionen.-
27. Struve-Funktionen.-
28. Elliptische Integrale.-
29. Parabolische Zylinderfunktionen.-
30. Whittaker-Funktionen.- Drittes Kapitel: Exponentielle Fourier-Transformationen.- Anhang: Zusammenstellung von Abkürzungen und Definitionen der Funktionssymbole.- Literatur.
Kundenbewertungen zu Fritz Oberhettinger „Tabellen zur Fourier Transformation“
Noch keine Bewertungen vorhanden
Zur Rangliste der Rezensenten
Veröffentlichen Sie Ihre Kundenbewertung:
Kundenbewertung schreiben
Unsere Leistungen auf einen Klick
Unser Service für Sie
Zahlungsmethoden
Bequem, einfach und sicher mit eBook.de. mehr Infos akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal mehr Infos
Geprüfte Qualität
  • Schnelle Downloads
  • Datenschutz
  • Sichere Zahlung
  • SSL-Verschlüsselung
Servicehotline
+49 (0)40 4223 6096
Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 18.00 Uhr
Chat
Ihre E-Mail-Adresse eintragen und kostenlos informiert werden:
* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.
Bei als portofrei markierten Produkten bezieht sich dies nur auf den Versand innerhalb Deutschlands.

** Deutschsprachige eBooks und Bücher dürfen aufgrund der in Deutschland geltenden Buchpreisbindung und/oder Vorgaben von Verlagen nicht rabattiert werden. Soweit von uns deutschsprachige eBooks und Bücher günstiger angezeigt werden, wurde bei diesen kürzlich von den Verlagen der Preis gesenkt oder die Buchpreisbindung wurde für diese Titel inzwischen aufgehoben. Angaben zu Preisnachlässen beziehen sich auf den dargestellten Vergleichspreis.
eBook.de - Meine Bücher immer dabei
eBook.de ist eine Marke der Hugendubel Digital GmbH & Co. KG
Folgen Sie uns unter: