In einem Manuskript aus dem Jahre 1676 behandelt Gottfried Wilhelm Leibniz (1646 1716) die Integration monotoner Funktionen. Hieraus lässt sich eine Integrationstheorie entwickeln, mittels derer man alle in der Schule verwendeten Basisfunktionen integrieren und allgemeine Integrationsregeln herleiten kann. Im Gegensatz zu dem üblichen formalen Zugang benötigt diese Theorie nur einen propädeutischen Grenzwertbegriff, wie er in den KMK-Bildungsstandards gefordert wird; letztlich reicht eine einzige Grenzwertbetrachtung aus. Zudem wird die Integralrechnung nicht auf eine Umkehrung der Differentialrechnung reduziert.
Inhaltsverzeichnis
Integrale monotoner Funktionen. - Integration elementarer Funktionen. - Kommentare aus der Sicht der Universitäts- und der Schulmathematik. - Das Manuskript von Leibniz aus dem Jahre 1676 über Infinitesimalrechnung. - Weitere Bestimmungen von Integralfunktionen und Rechenregeln fur die Integration. - Analogie zum Hauptsatz der Differential- und Integralrechnung.
Es wurden noch keine Bewertungen abgegeben. Schreiben Sie die erste Bewertung zu "Integralrechnung frei nach Leibniz" und helfen Sie damit anderen bei der Kaufentscheidung.