The classic text on mathematical analysis.
Inhaltsverzeichnis
1. Complex numbers; 2. The theory of convergence; 3. Continuous functions and uniform convergence; 4. The theory of Riemann integration; 5. The fundamental properties of analytic functions; 6. The theory of residues; 7. The expansion of functions in infinite series; 8. Asymptotic expansions and summable series; 9. Fourier series and trigonometrical series; 10. Linear differential equations; 11. Integral equations; 12. The gamma function; 13. The zeta function of Riemann; 14. The hypergeometric function; 15. The Legendre function; 16. The confluent hypergeometric functions; 17. Bessel functions; 18. The equations of mathematical physics; 19. Mathieu functions; 20. Elliptic functions; 21. The theta functions; 22. Jacobian elliptic functions; 23. Ellipsoidal harmonics and Lamé's equation.